V.I. Valkov, A.V. Golovchan, D.V. Varyukhin, T.S. Sivachenko

CHANGES IN THE ELECTRONIC STRUCTURE OF THE Fe_{a-x}Mn_xAs SYSTEM ALLOYS UNDER UNIAXIAL COMPRESSION

On the basis of *ab initio* calculations using a fully relativistic KKR method to study changes in the control panel, electronic density of states is considered, arising under uniaxial compression of alloys of the Fe_{2-x}Mn_xAs system with P4/nmm symmetry group, where spontaneous and magnetic field induced transitions of AF to the non-collinear LFi₁, LFi₂ phases are observed. From the results of ab initio calculations, the most general regularities of changes in the structure of non-magnetic density of electronic states and the degree of electron filling of N_d as a reaction to the corresponding types of deformation were singled out. The uniform or hydrostatic compression (c/a = const, $\omega < 0$) result in a slight decrease in the population of the *d*-band N_d , an increase in the effective width of the filled and empty part of the d-band $\Delta E = \Delta E_{\text{filled}} + \Delta E_{\text{empty.}}$ Compression (P || c) along the tetragonal axis stronger reduces the population of the *d*-band, narrows the region of the filled states and expands the area of the empty states in a general increase in the band width ΔE . Uniaxial deformation $(P \perp c)$, resulting in an increase in the relative volume of the cell $(\omega > 0)$, narrows the field of the empty states while increasing the width of the occupied states in such a way that the effective width of the *d*-band narrows with increasing population of the *d*-band. The features of the effect of each of two factors (the form of the density of electronic states and the number of *d*-electrons) on the stability of magnetically ordered states was analyzed in the framework of a two-site model of itinerant electrons. The parameters used in the model were the value of the intra-exchange interaction J and the number of d-electrons per a state that were directly evaluated according to ab initio calculations of the electronic structure of Fe2-xMnxAs for different types of compression of an elementary cell ω . In full agreement with the experimental data, it was demonstrated that hydrostatic compression and compression along the tetragonal axis have a destabilizing effect on the angular phases LFi₁, LFi₂, and compression in the direction perpendicular to the tetragonal axis direction results in stabilization of LFi1, LFi2 states in the course of spontaneous and magnetic field induced transitions of AF-LFi1-LFi2.

Keywords: antiferromagnetics, ferrimagnetics, electronic structure, density of electronic states

Fig. 1. Temperature dependences of lattice parameters *a*, *c*, magnetization σ and critical fields H_{cr1} , H_{cr2} for the single-crystal Fe_{0.75}Mn_{1.25}As sample [9]

Fig. 2. Onset temperature $T_{s1}(T_{s2})$ of ferrimagnetic (LFi) phase of the Fe_{0.935}Mn_{1.215}As sample (a = 2.15) at different types of compression: $P = P_g$ – hydrostatic compression, P||c – uniaxial compression along the tetragonal axis c; $P \perp c$ – uniaxial compression perpendicular to this axis; $\circ - T_{s1}$, $\bullet - T_{s2}$ (P||c); $\triangle - T_{s1}$, $\blacktriangle - T_{s2}$ ($P = P_g$); $\diamond - T_{s1}$, $\bullet - T_{s2}$ ($P \perp c$)

Fig. 3. Field dependences of magnetization of the single-crystal $Fe_{0.786}Mn_{1.414}As$ sample (*a* = 2.2) perpendicular to the tetragonal axis (*C*||*Z*) (*a*) and along the axis (δ) under uniaxial compression (*P*, kbar: 1, 3, 4, 5 – 0.001; 2 – 0.52; δ – 0.48) and at the temperature (*T*, K: I - 321; 2, 3 - 343; 4 - 313; 5, 6 - 331 [7]); I, 4 – the initial weakly ferrimagnetic state; 2, 3, 5, 6 – antiferromagnetic state

Fig. 4. Densities of the *d*-electron states of some compounds of the $\text{Fe}_{2-x}\text{Mn}_x\text{As}$ system in the non-magnetic phase, reduced to the single Fermi level: -x = 1.15, -x = 1.45. Symbols E_i , D_j mark the characteristic values of DOS(E)

Fig. 5. Relative volume dependence of electron filling and characteristics of the form of the density of electron states DOS_{dNM} : a – uniform compression (c/a = const); δ – uniaxial compression along c axis ($\Delta c < 0$, $\Delta a > 0$); e – uniaxial compression perpendicular to c axis ($\Delta c > 0$, $\Delta a < 0$); $\Box - \Delta E$, $\blacksquare - M_{FM}$, $\circ - D2$, $\bullet - D5$, $\blacktriangle - \Delta E_{occup}$, $\Delta - \Delta E_{empt}$

Fig. 6. Model curves of magnetization in the normal state ($\triangle - m_{\text{FM}}, \omega = 0; \circ - m_0, \omega = 0$) and in the deformed state ($\bullet - m_0, |\omega| > 0; \blacktriangle - m_{\text{FM}}, |\omega| > 0$) at n = 1.2128 (x = 1.31): a compression $\perp c, \omega = +0.588\%; \delta$ – compression || $c, \omega = -0.6\%; \epsilon$ – uniform compression, $\omega = -0.8\%; \delta, \epsilon$ are related to curves $\delta, 2$ in Fig. 3