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Hccnedyromest Hogvle cmpyKmypHble COCMOSHUSL (DPAKMATbHOU OUCTOKAYUU HA OCHOBE
meopuu 0pobHO20 ucyucienus u onepamopos I amunomona. B pamkax cmamucmuyecko-
20 n00xX00a OJisl ONUCAHUL NOBEOEHUsL CIOXACMUYECKo20 NoJsa depopmayuu ppakxmanio-
HOU OUCTOKAYUU BBO0SIMCSL YCPEOHeHHble KOMNIEKCHble QyHKyuU. Buinonneno uuciennoe
MOOenUposanue nogedeHuUsi KOMIIEKCHO20 NOJsL 0ehopMayuu Ha NPSIMOY2OIbHOU OUC-
KkpemHou pewemxe. [loxazarno, ymo 051 UHEEPCHBIX (C OMPUYAMETbHBIM DPAKMATLHBIM
UHOEKCOM) CMPYKMYPHBIX COCMOSHUL QPAKMATIbHOU OUCIOKAYUU CYUWeCmEYem UHmep-
8471 USMEHEHUsL OMO20 UHOEKCA C AHOMANbHLIM NOBedeHueM NoJis oehopmayuu: Hympu
unmepeana omcymcmeyem 3¢gekmugnoe 3amyxarue. Beeoenuvie ycpeOHeHHblie (DYHK-
YUU NO360ISAI0M BbIAGUNMb HAUYUE KEAHMOBLIX U HEOOIUHBIX CIMAMUCTHUYECKUX CBOUCME
nozs degpopmayuu.

KaroueBble cioBa: (bpaKTaJII)HaSI JUCJIOKalHsA, CTOXaCTUYCCKOC IT0JIC I[G(I)OpMaHI/II/I, qucC-
JICHHOC MOACIMPOBAHUEC, CTATUCTUICCKUC CBOﬁCTBa, HWHBCEPCHBIC CTPYKTYPHBIC COCTOAHUSA

Llocrioocyiomvcst HOGI CMpPpYKmMYpHI cmanu GpaxkmanrbHoi OUCIoKayii Ha 0CHO8I meopii
0p0606020 obuuUCienHs i onepamopie I aminemona. Y pamxax cmamucmuyno2o nioxooy
0Jis1 ONUCY NOBEOIHKU CMOXACMUYHO20 Nojs Oepopmayii hpakmanvroi oucrokayii 660-
0samubest ycepeoneni Komnaekcui @yukyii. Buxonano uucenvie mMoodeno8anus noseoinku
KOMAIIEKCHO20 NOJIsL Oehopmayii Ha NPAMOKYmHIU Ouckpemnit pewimyi. Ilokasano, wo
0/1s IHBEPCHUX (3 He2amuHuM QPAKmaibHUM [HOEeKCOM) CMPYKMYPHUX CMAHI8 (pak-
ManbHol Quciokayii ichye inmepea sMiki Yb02o IHOEKCy 3 AHOMANTLHOIO NOBEOTHKOIO NO-
7151 Oehopmayii: scepeduni inmepsany 6iocymue epekmusne 3amyxanus. Beeoeni ycepeo-
HeHi DYHKYII 003601410Mb BUABUMU HAAGHICTb K8AHMOBUX | HE38UYAUHUX CMAMUCUY-
HUX gracmusocmetl nojs oepopmayii.

KurouoBi cioBa: ¢pakranbHa AMCIOKAlis, CTOXacTHUHE Moie Aedopmarii, ducenbHe
MOJICITFOBaHHSI, CTATUCTUYHI BIIACTHBOCTI, IHBEPCHI CTPYKTYpHI CTaHU
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1. Introduction

Last time many actively try to explain different experimental anomalous
properties of a physical object on the basis of the definition of the fractal [1].
An adequate description of anomalous behavior of physical parameters near
phase transitions, real structure of the lattice in real samples of magnets, fer-
roelectrics, high-temperature superconductors, amorphous alloys [2] requires a
model of a nonlinear lattice with the spontaneous deformation to be further de-
veloped on the basis of qualitatively new representations of the nature of frac-
tal and stochastic properties of the lattice. Among the real nanomaterials, ac-
tive nanostructural elements are clusters, pore, quantum dots, wells, corrals,
surface superlattices (see [3,4]). Active nanostructural elements can find their
application in quantum nanoelectronics [5], quantum informations, quantum
optics [6]. The fractal dislocation [7,8] is one of non-classical active nanos-
tructural objects. For the theoretical descriptions of fractal objects, the theory
of fractional calculations [12] has been proposed [9-11]. The fractal string
model has been proposed. The equations with fractional space-time derivatives
have been introduced in order to describe plastic subsystem of a fractal string.
To solve the basic dynamic equation in fractional derivatives, two approaches
have been suggested: reduction to a system of equations and the use of compo-
sition formulas for fractional derivative operators. The obtained results have
been generalized to the solution of the Cauchy problem in the matrix form.
The fractal string model was used in order to construct a model of a fractal
dislocation [13—16]. The inverse structural states of fractal dislocation are in-
vestigated in this paper.

2. The model and simulations

Plasticity of materials is determined by the motion of an ensemble of disloca-
tions. In article [13] the dynamic equations for the anisotropic plastic subsystem
of a fractal medium are obtained explicitly on the basis of the fractional calculus
model. For the special case of isotropic fractal medium [9—-11], the original equa-
tion for the fractal string is

D} (pyD) @ ) = D (g DIDy ). ()

where the function @ (¢,z) depends only on the dimensionless variables of time ¢
and coordinates z; v, a are fractal indices of partial fractional derivatives of Rie-
mann—Liouville D", DY on ¢, z, respectively; p, and i, are dimensionless effect-

ive parameters that are associated with the mass density and power characteristics
of a fractal medium. Fractal indices v, o have the meaning of fractal dimension

along the axes Ot, Oz. If p,(z) and 4 (?) are functions of z and ¢, respectively, then
(1) reduces to a system of equations for an unknown function @, (¢,z) with

varying eigenvalues Aqy(?), Ay(2):
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DYD'®, —w*D*DiD, =0, w(t,2)=py 1)/ py(2), )
DD, =, ()D,, DD, =k, (2)D,, A2(z)=wAi(r). (3)

We will choose DY, D), IY in the following form

e, =0, [ D, (18)z-F dET(1-0). @

DY®, =9, L’ D (T, 2)|t - r|_vdt/F(1 ~v), (5)
z o-1

120, = [ ®,(1E)]z-E dgT(@), (6)

where 0., 0, are the operators of the usual partial derivatives; I' is the gamma

function. When z > &, the operator D coincides with the operator of the left-
sided DY

ot and when z < & it coincides with the operator of the right-sided DZ _
that are fractional derivatives of Riemann—Liouville [12]. Using these operators al-
lows to describe the behavior of the function ®, when passing through the value z = z,..

Next, we find the functions @, as solutions of equations (3) for the Cauchy-

type problem [11] in two representations

-1
q)(x = hl (towz)|t_ta|v Ev,v(\llv) > Yy = }\’v(z)|t_ta ' ’ (7)
1
®, = h2 (l‘=ZC)|Z_Zc|OL Eoc,a(\lloc)a Vo = 7‘(1(1()|Z_Zc * > (8)
htz)=1"",, h(tz)=1""D,, 9)

where E, , (v,), Eyq(v,) are the Mittag—Leffler functions [12].

To find the eigenvalues A, (or A,), we use the Hamilton operator H of
[8,14,15] for the energy spectrum of the fractal dislocation

ﬁ:ﬁ0+ﬁb, ﬁ():vgz(ﬁl'i'ﬁz)'i'g?)ﬁ:;, ﬁb:83n053, (10)
L o _ l-o ~ _ 2 _
by=(1-a)l; —[DZ ,Z:|, ng =1-2sn"(ug, k), ug=u—uy. (11)

Here k, u — ug are the module and the argument of the elliptic sine; 7;, n,, 713 are
operators of occupation numbers of states of the dislocation with the dimension-
less self-energy €1 = €, €3; z is the coordinate operator. Variable u is the dimen-
sionless displacement of the deformation field, which is related to the dimension-
less stress field A, on Hooke’s law u = Ay/Ag, where A is the force parameter.
Note that the operators (10), (11) allow to describe inverse (o < 0) states. This
is due to the fact that in the theory of fractional calculus [12] for the values a €
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[-1, 0], it is possible to have a transition from operators DS, I3 to operators

D% = 7% 170 = D7%  In regards to such a transition, the commutator from
(11) retains its form. In this case, the old physical interpretation of the fractal di-
mension is preserved for the module |a. Operators ﬁo, H » do not depend ex-
plicitly on time.

Let us consider the state of fractal dislocations at ¢ = #.. The function describing
this state ®(z) = ® D (z) depends only on z. Here @, is the eigenfunction of the
operator ﬁo in the diagonal representation of the population numbers ny, ny, ns;

Dy(2) = D2, 2) 1s a function obtained from (8) at ¢ = ¢.. Further, we find the to-
tal energy E of fractal dislocation

HO=ED, ho,.(2) =Py (2), (12)
E:E8+83n0xac; ES :82 (l’ll +n2)+83n3. (13)

From (13), (2), (12) we receive the system of the nonlinear equations for gy, A,

gl:(l_a)/XOLc:(1_0“)83’/10/(E_Es)= (14)
Aoe =0 (2)/ W (t.,2) = gf, (15)
|g1| = |Z_Zc|_OL EOL,(X (\V(xc)/E(x,Zoc (\Vsc) > Woe = 7"ow|Z_Zc|OL- (16)

Modeling the behavior of the deformation field is made on a rectangular lattice
with discrete sizes. N; x N, Deviation of the sites of this lattice from the state
with u = 0 is described by the operator of displacement # . This operator is as-

signed to a rectangular matrix with the elements u,,,,, where n=1,N;, m=1,N, .

Four nonlinear model equations for u(z, a) = Aqc/Ag = ugi(z,a) (i = 1, 2, 3, 4) are
obtained from (16)

2ug =g1-82+84, 2Ugp=81—82— 84> (17)
2ugy=-g1—8+8s, 2u4=-g1—82—8s> (18)

5 1/2 5 1/2
g4=[(82+gl) —gs} , gs=[(gz+gl) —gs} . (19)

These elements u,, are found by solving nonlinear equations (17), (18) by the it-
eration method. An iterative procedure itself simulates a stochastic process on a
rectangular discrete lattice. In general case, elements u,,,(z,00) are random com-
plex functions of two real variables z and a, and they also depend on a number of
other internal and external governing parameters. Functions g1, g», g3 for numeri-
cal simulation are in the form

s (u,oc) = (1—0L)(1—2sn2 (u —uo,k))/(po —pln—pzm—p3j), (20)
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g2(z,a)=2_2°‘33“_1/2|z—zc|_aya/\/EF(OL+1/2), (21)
g3(20) =32z [y, /1, v, =T(a+1/3)T(a+2/3), (22)

where z, is the critical value of the dimensionless coordinate z; pg, p1, p2, p3 are the
governing parameters. A distinctive feature of the behavior of the displacement field
of fractal dislocation for inverse states is the existence of an interval of fractal dimen-
sion, where the imaginary parts u.(z,0.) approach zero, which indicates the absence
of effective damping. Within this interval, there are singular points (attractors [17])
with the values oo = —1/3 and a = —2/3. When going through these singular points, the
displacement field shows a different behavior. As an example, we give the depend-
ency of the function ug; from the lattice nodes indices n, m for values o = —0.5, z. =
=2.7531, z = 1.753 (Fig. 1), received by iterations method by an index m. In the
modeling we have assumed that: k=0.5, 7 =1, uy =29.537, pg = 0.01, p» = p3 = 0; the

initial condition is u; 1 =0, n=1;30, m =1;40 . Filling in the matrix was carried out

by rows. Changing the governing parameter results in different states of fractal dislo-
cation with stochastic behavior of the deformation field (Fig. 1).

Fig. 1. The behavior of the function ug; depending on n, m for the fractal dislocation
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On Fig. 1,a, the dislocation is located near the lower boundary (n = 1). The
localization region of the dislocation is limited to the value n < 13. When n >
13 the surface uq(n, m) is close to a smooth one. Plane singularities of the
dislocation are located at n. = po/p; = 0.06579 and go out of the lower bound-
ary. Decrease in the parameter p; (Fig. 1,b,c) results in an increase in value n,,
which is accompanied by a shift of fractal dislocation parallel to the axis m. In
this case, a regular deviation of the rectangular lattice nodes with ug; # 0 starts
to appear at the lower boundary, and the range of the randomization applies to
all other nodes in the lattice (Fig. 1,b). For the lattice nodes with n < 13, the
regular behavior is characteristic, and for » > 13, the stochastic behavior is ob-
served (Fig. 1,c). In this case there are deviations at the boundary sites (n = 1)
of the damping amplitude wave type. With further decrease in pi, the plane of
the singular points of the dislocation comes out of the specified region of the
lattice (Fig. 1,d). Moreover, for all the lattice sites, the regular behavior with
ug1 # 0 is characteristic. The presence of the sites, with the deviations type
wave with damping amplitude along the axis m is clearly expressed at the
lower boundary.

The analysis of the behavior of the deformation field in the various nodal
planes z = z; is convenient to be made in terms of averaged functions M; with the
operator of the density of states p and matrix elements p,,,

N, N
A A ~ T 2
Mi(Zaa):Sp(pusi)s p:é;NzéNl /N2N1= zzpmn :1’ (23)
m=1n=1
where Sp, T are the operations of calculating the trace of square matrix, transposi-
tion; é_, Ny > & N, are the row-vectors of dimension 1 x Ny, 1 x N,, respectively, and

the elements equal to unity. The averaging is performed over the nodes of a discrete
rectangular lattice (n, m), and in directions perpendicular to the plane of the lattice,
the averaging is absent. This makes it possible to obtain the dependency of the av-
eraged functions from z and identify their clearly expressed stochastic behavior for
all four branches of the dimensionless displacement function ug; (Fig. 2). The pre-
sence of the step-type behavior of a lattice is closely connected with the occurrence
of quantum properties and quantum chaos [3] at average functions of fractal dislo-

cation. In modeling, we assumed that z = z; = 0.053 + 0.1 (j — 1), where j=1,67.
Values z were varied in the interval [0.053; 6.653] with the step z; = 0.1.

When z = z; the values M3, M, (Fig. 2,a) and M, M, (Fig. 2,c) are zero. Near
z = zpg the features of the global local minima and maxima type with a nonzero
gap between the curves 2, 4 (Fig. 2,d) and 1, 4 (Fig. 2,f) are observed. The effect
of mixing-up curves is observed when changing z. The behavior of the functions
M (of soft mode type) at z = z; and near z = z,g agrees with the behavior of fractal
dislocation displacements (Fig. 1).
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3. Conclusions

A model of fractal dislocation is constructed on the basis of the coupled system
of the following equations: the dynamics for fractal strings with the operators of
fractional derivatives, the Hamiltonian operator for the energy spectrum of fractal
dislocation and Hooke’s law, which describes the connection between stress and
strain of a fractal dislocation. Within the framework of this model, the simulation
of the deformation field of dislocation has been executed. For the inverse of the
structural states of the fractal dislocation, the soft-mode type behavior is observed.
The stochastic behavior, the change of the states of the dislocation, the absence of
the effective damping and unusual quantum properties are observed near singular
points (attractors).

Some material of this paper was reported at the 4-th Chaotic Modeling and
Simulation International Conference (CHAOS 2011), May 31-June 3, 2011, Ag-
10s Nikolaos, Crete, Greece.
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V.S. Abramov

INVERSE STRUCTURAL STATES OF THE STOCHASTIC
DEFORMATION FIELD OF FRACTAL DISLOCATION

New structural states of fractal dislocation are investigated on the basis of fractional
calculation theory and Hamilton operators. In order to describe the behaviour of the sto-
chastic deformation field of a fractal dislocation within the framework of the statistical
approach, average complex functions are introduced. Numerical modelling of the com-
plex deformation field behaviour is fulfilled on a rectangular discrete lattice. It is shown
that for inverse (with a negative fractal index) states of a fractal dislocation, there is an
interval of change of this index with anomalous behaviour of the deformation field: there
is no effective attenuation within the interval. The introduced functions allow to educe the
presence of quantum and unusual statistical properties of the deformation field.

Keywords: fractal dislocation, stochastic deformation field, numerical modeling, statisti-
cal properties, inverse structural states
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