PACS: 75.60.-d, 71.30.+h, 73.63.Bd, 75.30.Cr, 71.30.+h

В.Т. Довгий, А.И. Линник, В.И. Каменев, В.Ю. Таренков, С.Л. Сидоров, Б.М. Тодрис, В.И. Михайлов, Н.В. Давыдейко, Т.А. Линник

ОСОБЕННОСТИ МАГНИТНЫХ, ЭЛЕКТРИЧЕСКИХ СВОЙСТВ И МАГНИТНО-НЕОДНОРОДНОЕ СОСТОЯНИЕ МОНОКРИСТАЛЛА Nd_{0.5}Sr_{0.5}MnO₃

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

Статья поступила в редакцию 10 августа 2012 года

Исследованы гистерезисные особенности поведения намагниченности и сопротивления при перемагничивании в квазистатическом (до 9 Т) и импульсном (до 14 Т) магнитных полях. Изучены также процессы релаксации намагниченности и сопротивления после воздействия магнитного поля 9 Т. Для низких температур предложен механизм перемагничивания фаз антиферромагнитной изолирующей-ферромагнитной металлической (AFM/I-FM/M) и существования высокопроводящего состояния образца после снятия намагничивающего поля. Механизм связан с медленной релаксацией неравновесной решетки, соответствующей FM-фазе (большего объема), к равновесной AFM-решетке (меньшего объема).

Ключевые слова: манганиты, намагниченность, удельное сопротивление, магнитная неоднородность, фазовые переходы, упорядочение, релаксация

1. Введение

Исследование редкоземельных манганитов со структурой перовскита является важным направлением физики твердого тела. Эти соединения интересны с точки зрения изучения взаимодействия между магнитными, электрическими и структурными параметрами в сильнокоррелированных системах [1–3]. Природа магнитных и электрических взаимодействий в этих материалах в настоящее время не полностью понятна и является предметом широких дискуссий. С практической точки зрения они интересны как материалы, проявляющие колоссальное магнитосопротивление (КМС). Кроме того, они являются перспективными для использования в качестве записывающих и считывающих устройств магнитной записи, высокочувствительных датчиков магнитного поля, тока, температуры и давления [3,4].

Важную роль в физике манганитов играют неоднородные состояния, проявляющиеся в виде зарядового упорядочения катионов $Mn^{3+}-Mn^{4+}$, струк-

[©] В.Т. Довгий, А.И. Линник, В.И. Каменев, В.Ю. Таренков, С.Л. Сидоров, Б.М. Тодрис, В.И. Михайлов, Н.В. Давыдейко, Т.А. Линник, 2012

турных и магнитных поляронов, фазового расслоения. По данным нейтронографии, фазовое расслоение в манганитах имеет место как в микроскопическом (10–20 Å), так и в мезоскопическом (порядка 1000 Å) масштабах. Явление КМС в манганитах связывают с их магнитно-неоднородным состоянием [5–7].

Манганиты с половинным замещением демонстрируют спиновое, зарядовое и орбитальное упорядочение. Это упорядочение может быть подавлено магнитным полем как результат перехода из антиферромагнитного полупроводникового в ферромагнитное металлическое состояние [8,9].

В работе проведены исследования структурных, магнитных и транспортных свойств монокристаллов состава $Nd_{0.5}Sr_{0.5}MnO_3$ в широкой (6–400 K) области температур, квазистатическом магнитном поле до 9 T, импульсном магнитном поле до 14 T. Изучены процессы релаксации намагниченности и сопротивления после воздействия магнитного поля 9 T.

Цель работы – выяснение природы гистерезисного характера поведения полевых зависимостей сопротивления и намагниченности при низких (≈ 10 K) температурах и в магнитных полях до 9 T, установление причины существования высокопроводящего состояния образца после снятия магнитного поля.

2. Методика получения и исследования образцов

Монокристаллические образцы состава Nd_{0.5}Sr_{0.5}MnO₃ выращены методом плавающей зоны с радиационным нагревом [10]. Параметры кристаллической решетки монокристалла и направления кристаллографических осей определяли на рентгеновском дифрактометре ДРОН-2 (Ni K_{α} -излучение) по положению линий (600), (060), (008). Постоянные решетки составили: a == 5.4780 Å, b = 5.4308 Å, c = 7.6116 Å.

Измерение полевых и температурных зависимостей намагниченности и удельного сопротивления и исследование процесса их релаксации выполняли на установке PPMS 6000 в квазистатическом магнитном поле. В импульсном магнитном поле были исследованы зависимости M(H) в интервале температур 18–200 К с помощью индукционной методики. При этом в каждом цикле измерений на образец воздействовали двухполярным импульсом магнитного поля общей длительностью 1.5 ms. Образец с микросоленоидом и измерительными катушками находился внутри контейнера высокого давления, заполненного газообразным гелием. Для понижения температуры образца от 300 до 18 К сосуд высокого давления помещали в выносную ячейку гелиевого детандера [11].

3. Экспериментальные результаты и их обсуждение

Монокристаллы состава $Nd_{0.5}Sr_{0.5}MnO_3$ при охлаждении от комнатной температуры испытывают следующие преобразования: парамагнитный изолятор (PM/I)–ферромагнитный металл (FM/M) (255 K), ферромагнит-

ный металл (FM/M) (255–150 К)-антиферромагнитный изолятор (AFM/I) (< 150 К) [9].

На рис. 1 и 2 приведены полевые зависимости намагниченности M и удельного сопротивления ρ при температуре 10 К в квазистатическом поле (рис. 1 и 2, кривые 1-3) и при температуре 18 К в импульсном поле (рис. 1, кривые 5-7). Кривые намагничивания в квазистатическом поле демонстрируют сосуществование FM- и AFM-фаз. Каждый раз после установления равновесного состояния образца, соответствующего AFM/I-фазе, начальные участки кривых M(H) идут по одной и той же кривой 4 и в низких полях соответствуют намагничиванию существующей FM-фазы, а гистерезисные участки M(H) в высоких полях соответствуют перемагничиванию фаз AFM/I–FM/M. Отметим, что переход AFM/I–FM/M происходит плавно, начиная с 3–6 Т. При этом перемагничивание до 3 Т носит практически безгистерезисный характер.

Рис. 1. Полевые зависимости намагниченности M монокристалла Nd_{0.5}Sr_{0.5}MnO₃ при температуре 10 К в квазистатическом поле (кривые 1-4) и при температуре 18 К в импульсном поле (кривые 5-7). Стрелками показаны направления изменения магнитного поля. Кривые 1, 2, 3 соответствуют последовательному намагничиванию и размагничиванию образца в квазистатическом поле до 3, 6, 8(9) Т

Рис. 2. Полевые зависимости удельного сопротивления ρ монокристалла $Nd_{0.5}Sr_{0.5}MnO_3$ при температуре 10 К в квазистатическом поле. Обозначения, как на рис. 1

Перемагничивание в импульсном и квазистатическом полях заметно отличается. Для образца, находящегося изначально в равновесном состоянии, намагничивание начинается по кривой 5, а переход AFM/I–FM/M происходит резко при величине импульсного поля порядка 10 Т. Размагничивание и перемагничивание в отрицательном поле идет по кривой 7, пока поле не обратится в нуль. Повторное перемагничивание через 3–5 min после окончания первого цикла начинается по кривой 6. При этом переход AFM/I–FM/M наблюдается при величине импульсного поля порядка 8 Т. Далее перемагничивание снова идет по кривой 7.

Полевые зависимости удельного сопротивления р (рис. 2) в квазистатическом поле также проявляют гистерезисный характер, демонстрируют резкое уменьшение сопротивления в магнитном поле 9 Т и сохранение этого высокопроводящего состояния после снятия магнитного поля. Отметим, что при намагничивании до 3 T зависимость $\rho(H)$ имеет очень слабый гистерезис и обратима (кривая 1-1). В то же время после намагничивания до 6 T сопротивление образца заметно уменьшилось и после сброса поля не вернулось к исходному значению (кривая 2–2). Последовавший вскоре очередной цикл намагничивания до 9 Т начался от этого нового значения сопротивления, дал еще больший гистерезис и привел к упомянутому высокопроводящему состоянию (кривая 3-3). Наблюдаемое изменение удельного сопротивления на несколько порядков при воздействии магнитного поля также является специфическим КМС, аналогичным тому, которое наблюдается в районе T_{C} , но гораздо большей величины и происходит из-за разрушения зарядового упорядочения и магнитного фазового перехода AFM/I-FM/M. При сопоставлении зависимостей M(H) и $\rho(H)$ обнаруживается противоречие: кривые намагниченности «замкнуты», и образец в нулевом поле размагничен, а кривые удельного сопротивления «разомкнуты» (кроме цикла 1-1), и при увеличении магнитного поля до 9 T, а затем при его снижении до 0 низкоомное состояние сохраняется.

На рис. 3 и 4 соответственно приведены кривые температурного изменения намагниченности М и удельного сопротивления р после воздействия магнитного поля 8(9) Т. Нагрев образца осуществляли со скоростью ~ 1 К/min. Причем кривую $\rho(T)$ снимали сразу после сброса поля, а кривые M(T) – сразу после сброса поля (рис. 3, кривая 2) и через 24 h (рис. 3, кривая 1). Из рис. 3 видно, что кривая 1 демонстрирует поведение, которое соответствует наличию в данном кристалле упомянутых выше фаз. При температуре ниже 10 К наблюдается «ступенька», обусловленная возникновением спонтанного магнетизма подрешетки ионов Nd. Ее магнитный момент, очевидно, направлен против магнитного момента остаточной FM-фазы, которая сосуществует в данном кристалле совместно с основной AFM-фазой до 150 K. В то же время зависимости M(T) (рис. 3, кривая 2) и $\rho(T)$ (рис. 4) в области низких температур демонстрируют восстановление М и р к равновесным величинам, характерным для AFM-состояния. Постоянные времени релаксации на участках, описываемых экспонентами $M = M_0 + M_1 e^{-t/\tau}$ и $\rho = A_1 e^{t/\tau}$, составили $\tau \approx 9.7$ min и $\tau \approx 7$ min соответственно для намагниченности и удельного сопротивления (см. вставки на рис. 3 и 4).

По данным нейтронографических и магнитных исследований, в манганите Nd_{0.5}Sr_{0.5}MnO₃ при T < 150 K сосуществуют три фазы: антиферромагнитные AFM CE-типа ($\approx 60\%$), AFM A-типа ($\approx 20\%$) и ферромагнитная FM ($\approx 20\%$) с объемом элементарной ячейки $V_{CE} = 159.1$ Å³ (моноклинная симметрия), $V_A = 158.65$ Å³, $V_{FM} = 159.4$ Å³ (орторомбическая симметрия) [12]. В то же время при T > 150 K основной (> 80%) является FM-фаза с соответствующим наибольшим объемом элементарной ячейки.

Рис. 3. Температурные зависимости намагниченности M монокристалла Nd_{0.5}Sr_{0.5}MnO₃ (измерены в поле 0.5 T): l – через 24 h после сброса поля 8 T; 2 – сразу после сброса поля от 8 до 0.5 T. На вставке – кривая релаксации начального участка зависимости M(T), выделенного прямоугольником

Рис. 4. Температурная зависимость удельного сопротивления ρ монокристалла Nd_{0.5}Sr_{0.5}MnO₃. На вставке – кривая релаксации начального участка зависимости $\rho(T)$, выделенного прямоугольником

Проведенные нами исследования показали, что при температурах порядка 10 К под воздействием магнитного поля переход AFM/I–FM/M происходит в результате перестройки кристаллической решетки монокристалла $Nd_{0.5}Sr_{0.5}MnO_3$ за счет магнитострикции. Ясно, что такая перестройка при температурах ~ 10 К не может происходить быстро. Однако в квазистатическом магнитном поле скорость его изменения, по-видимому, сравнима со скоростью трансформации решетки, и переход AFM/I–FM/M происходит плавно, что уже отмечалось при описании рис. 1.

В то же время, несомненно, в импульсном поле скорость изменения поля значительно превышает скорость преобразования решетки, и поэтому переход AFM/I-FM/M происходит, только когда величина поля достигнет уровня, при котором возможно существование лишь фазы FM/M, что подтверждается резкостью перехода (рис. 1, кривая 5). При уменьшении поля образец, какое-то время сохраняя свое новое FM/М-состояние, проявляет высокое значение FM-момента и при смене знака поля проходит через размагниченное состояние из-за образования доменной структуры. Далее, переходя в отрицательное поле, образец ведет себя как чисто ферромагнитный, проявляя то же высокое значение магнитного момента. Причем особенно это очевидно для эксперимента в импульсном поле (рис. 1, кривая 7). В квазистатическом же поле наблюдается гистерезис, связанный с тем, что образец успевает частично релаксировать к равновесному состоянию и поэтому при повторном намагничивании в положительном или отрицательном поле обнаруживает более низкое значение М. Величина гистерезиса пропорциональна величине поля, до которого намагничивается образец, что, очевидно, обусловлено тем, что с увеличением поля все большая часть фазы AFM/I переходит в состояние FM/M. Поле менее 3 Т не способно реализовать переход AFM/I – FM/M. В этом случае намагничивается лишь остаточная FM-фаза, что происходит практически безгистерезисным путем (рис. 1, кривая *1*).

Свидетельством метастабильности FM/M-состояния может служить результат, представленный на рис. 1, кривая 6. Как уже отмечалось, эта кривая получена в новом цикле импульсного перемагничивания через 3–5 min после окончания предыдущего цикла. Очевидно, за это время образец успел частично релаксировать к фазе AFM/I, однако часть образца сохранила фазу FM/M с более низким значением магнитного момента, до которого образец и намагнитился при повторном перемагничивании, а в дальнейшем полный переход AFM/I–FM/M происходит при меньшем значении импульсного поля (см. резкий переход на кривой 6), чем в случае, когда исходное состояние было равновесным при данной температуре.

Рис. 5. Температурные зависимости критического импульсного поля H_{cr} фазового перехода AFM/I–FM/M монокристалла Nd_{0.5}Sr_{0.5}MnO₃: I – первый цикл перемагничивания (образец в равновесном состоянии); 2 – второй цикл перемагничивания через 3–5 min после первого

Следует отметить, что с повышением температуры переход AFM/I-FM/М наблюдается при все более низком значении импульсного поля. На рис. 5 приведены температурные зависимости критических полей Н_{сг} данного перехода, которые определены по максимуму производной dM/dH от зависимостей M(H), аналогичных такой же зависимости, приведенной на рис. 1 для температуры 18 К. При этом кривая 1 на рис. 5 получена в первом цикле перемагничивания, когда исходно при каждой температуре образец находился в равновесном состоянии, а кривая 2 – при повторном перемагничивании через 3-5 min после окончания пер-

вого цикла. Как видно из рис. 5, при увеличении температуры от 18 до 130 К величина H_{cr} уменьшается в 3 раза. В то же время из рисунка видно, что кривые 1 и 2 сходятся при температуре ~ 100 К. Этот факт может свидетельствовать только об одном: при температуре ~ 100 К времени 3–5 min между циклами импульсного перемагничивания достаточно, чтобы кристаллическая решетка образца испытала полную релаксацию и перешла в равновесное состояние. Напомним, что при 10 К постоянная времени релаксации составляет до 10 min, и, следовательно, для полной релаксации могут потребоваться часы.

Таким образом, при температуре ~ 10 К и намагничивании в поле 9 Т АFM-фазы CE- и А-типа испытывают переход в FM «металлическую» фазу. При этом за счет магнитострикции происходит и структурный переход с увеличением объема элементарной ячейки (учтем, что объемная магнитострикция для кристалла $Nd_{0.5}Sr_{0.5}MnO_3$ при 10 К в 6 раз больше, чем при 150 К [13]). Поэтому после снятия намагничивающего поля 9 Т возникающая в FM-фазе доменная структура приводит образец к размагниченному состоянию (M = 0), а релаксация увеличенной («разбухшей») решетки происходит медленно и примерно соответствует релаксации сопротивления при данной температуре.

Эксперименты по туннельной спектроскопии на Nd_{0.5}Sr_{0.5}MnO₃ показывают, что щель в плотности состояний при температуре зарядового упорядочения составляет ~ 300 meV. Эта щель намного больше, чем энергия зарядового упорядочения ($\approx 12 \text{ meV}$) и магнитного поля 6 T ($\approx 1.2 \text{ meV}$) [13,14]. Поэтому непонятно, как при такой энергетической шкале поле в несколько тесла может разрушить зарядово-упорядоченное состояние. По-видимому, существование многофазности, как магнитной (наличие зародышей FM-фазы в недрах AFM-фазы), так и структурной (существование фаз с различным объемом элементарной ячейки), а также индуцирование магнитным полем за счет магнитострикции структурной перестройки с резким увеличением объема элементарной ячейки позволяют осуществить переход AFM \rightarrow FM. После снятия магнитного поля происходит медленная релаксация кристалической структуры к равновесной, характерной для AFM-фазы. При этом существующая в районе 10 K в течение многих минут неравновесная FM-фаза и дает высокопроводящее состояние образца.

4. Выводы

При намагничивании монокристалла $Nd_{0.5}Sr_{0.5}MnO_3$ в квазистатическом поле до 9 Т и импульсном поле до 14 Т в диапазоне температур 6–140 К АFM-фазы CE- и А-типа (с высоким удельным сопротивлением) испытывают переход в FM «металлическую» фазу (с низким удельным сопротивлением). Критическое поле перехода при импульсном намагничивании уменьшается в 3 раза с ростом температуры от 18 до 130 К.

Описанный эффект обусловлен индуцированным магнитным полем (за счет магнитострикции), структурным переходом с разрушением орбитального и зарядового упорядочения и увеличением объема элементарной ячейки, характерным для FM-фазы. После снятия намагничивающего поля 9 Т при температуре 10 К магнитный момент *M* и удельное сопротивление р испытывают релаксацию к равновесным значениям, характерным для AFMфазы с постоянными времени 9.7 и 7 min соответственно. При температурах 100–140 К полное время релаксации не превышает 5 min.

Гистерезисный характер поведения зависимостей M(H) и $\rho(H)$ при низких температурах соответствует перемагничиванию фаз AFM/I–FM/M и обусловлен медленной релаксацией увеличенной (большего объема) кристаллической решетки, соответствующей FM-фазе, к равновесной AFM-решетке меньшего объема. Наличие высокопроводящего состояния образца после снятия магнитного поля обусловлено существующей при температурах ~ 10 К в течение многих минут неравновесной FM-фазой.

- 1. М.Ю. Каган, К.И. Кугель, УФН 171, 577 (2001).
- 2. Ю.А. Изюмов, Ю.Н. Скрябин, УФН 171, 121 (2001).
- 3. *Э.Л. Нагаев*, УФН **166**, 833 (1996).
- 4. E.L. Brosha, R. Mukundan, D.R. Brown, F.H. Garzon, J.H. Visser, M. Zanini, Z. Zhou, E.M. Logotheris, Sensors and Actuators **B69**, 171 (2000).
- 5. В.М. Локтев, Ю.Г. Погорелов, ФНТ 26, 231 (2000).
- 6. M. Uehara, S. Mori, C.H. Chen, and S.-W. Cheong, Nature **399**, 560 (1999).
- 7. J.M. De Teresa, M.R. Ibarra, P.A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. Del Moral, and Z. Arnold, Nature **386**, 256 (1997).
- 8. H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, Y. Tokura, Science 270, 961 (1995).
- 9. R. Kajimoto, H. Yoshizawa, H. Kawano, H. Kuwahara, Y. Tokura, K. Ohoyama, and M. Ohashi, Phys. Rev. B60, 9506 (1999).
- 10. A.M. Balbashov, S.G. Karasbashev, Ya.M. Mukovskii, S.A. Zverkov, J. Cryst. Growth 167, 365 (1996).
- 11. А.Ф. Вуль, Б.М. Тодрис, ПТЭ № 5, 208 (1989).
- 12. C. Ritter, R. Mahendiran, M.R. Ibarra, L. Morellon, A. Maignan, B. Raveau, and C.N.R. Rao, Phys. Rev. B61, R9229 (2000).
- 13. R. Mahendiran, M.R. Ibarra, A. Maignan, F. Millang, A.A. Luraj, R. Mahesh, B. Raveau, and C.N.R. Rao, Phys. Rev. Lett. 82, 2191 (1999).
- 14. A. Bisvas, A.K. Raychaudhuri, A. Arulraj, C.N.R. Rao, Appl. Phys. 66, S1213 (1998).

В.Т. Довгий, А.І. Лінник, В.І. Каменєв, В.Ю. Таренков, С.Л. Сидоров, Б.М. Тодріс, В.І. Михайлов, Н.В. Давидейко, Т.А. Лінник

ОСОБЛИВОСТІ МАГНІТНИХ, ЕЛЕКТРИЧНИХ ВЛАСТИВОСТЕЙ ТА МАГНІТНО-НЕОДНОРІДНИЙ СТАН МОНОКРИСТАЛА Nd_{0.5}Sr_{0.5}MnO₃

Досліджено гістерезисні особливості поведінки намагніченості та опору при перемагнічуванні в квазістатичному (до 9 Т) й імпульсному (до 14 Т) магнітних полях. Вивчено також процеси релаксації намагніченості й опору після дії магнітного поля 9 Т. Для низьких температур запропоновано механізм перемагнічування фаз антиферомагнітної ізолюючої-феромагнітної металевої (AFM/I–FM/M) та існування високопровідного стану зразка після зняття поля, що намагнічує. Механізм пов'язаний з повільною релаксацією нерівноваженої гратки, що відповідає FM-фазі (більшого об'єму), до рівноваженої AFM-гратки (меншого об'єму).

Ключові слова: манганіти, намагніченість, питомий опір, магнітна неоднорідність, фазові переходи, упорядкування, релаксація V.T. Dovgii, A.I. Linnik, V.I. Kamenev, V.Yu. Tarenkov, S.L. Sidorov, B.M. Todris, V.I. Mikhaylov, N.V. Davydeiko, T.A. Linnik

PECULIARITIES OF MAGNETIC, ELECTRICAL PROPERTIES AND MAGNETIC INHOMOGENEOUS STATE OF SINGLE CRYSTAL $Nd_{0.5}Sr_{0.5}MnO_3$

The hysteresis features of magnetization and resistance are investigated at remagnetizing in quasistatic (up to 9 T) and pulse (up to 14 T) magnetic field. The relaxation processes of magnetization and resistance after influence of magnetic-field of 9 T are studied too. At low temperatures, the mechanism of remagnetizing of phases (antiferromagnetic insulating phase – ferromagnetic metallic phase: AFM/I–FM/M) and the existence of the high-conducting state of the sample after removing of the magnetizing field is offered. The mechanism is related to slow relaxation of the nonequilibrium lattice corresponding to the FM-phase (greater volume) to the equilibrium AFM-lattice (smaller volume).

Keywords: manganites, magnetization, specific resistance, magnetic inhomogeneity, phase transition, ordering, relaxation

Fig. 1. Field dependences of the single crystal Nd_{0.5}Sr_{0.5}MnO₃ magnetization M at the temperature of 10 K in quasistatic field (curves 1-4) and at the temperature of 18 K in pulse field (curves 5-7). Arrows show the directions of changes of the magnetic field. Curves 1, 2, 3 correspond to succeeding magnetization and demagnetization in the quasistatic field up to 3, 6, 8 (9) T

Fig. 2. Field dependences of the single crystal $Nd_{0.5}Sr_{0.5}MnO_3$ specific resistance ρ in the quasistatic field at the temperature of 10 K. Arrows show the directions of changes of the magnetic field

Fig. 3. Temperature dependences of the single crystal Nd_{0.5}Sr_{0.5}MnO₃ magnetization M (measured at the field of 0.5 T): I - 24 h after removing the field of 8 T; 2 - just after removing the field of 8 T down to 0.5 T. The insert shows the relaxation curve of initial section of dependence M(T) marked by the rectangle

Fig. 4. Temperature dependence of the single crystal Nd_{0.5}Sr_{0.5}MnO₃ specific resistance ρ . The insert shows the relaxation curve of initial section of dependence $\rho(T)$ marked by the rectangle

Fig. 5. Temperature dependences of the single crystal $Nd_{0.5}Sr_{0.5}MnO_3$ critical pulse field H_{cr} of the phase transition AFM/I–FM/M: I – the first cycle of remagnetizing (the equilibrium state of the sample); 2 – the second cycle of remagnetizing in 3–5 min after the first cycle