PACS: 81.40.Pq, 64.60.My

Н.Б. Эфрос¹, Л.Г. Коршунов², Б.М. Эфрос¹, А.А. Давиденко¹, В.Н. Варюхин¹

КОНТАКТНАЯ ПРОЧНОСТЬ НАНОКРИСТАЛЛИЧЕСКИХ СТРУКТУР ПОВЕРХНОСТЕЙ ТРЕНИЯ ВЫСОКОАЗОТИСТЫХ АУСТЕНИТНЫХ СПЛАВОВ

¹Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

²Институт физики металлов УрО РАН ул. С. Ковалевской, 18, г. Екатеринбург, 620041, Россия

Статья поступила в редакцию 12 марта 2012 года

Исследовано влияние концентрации азота на трибологические свойства аустенитных сплавов. Показано, что азотсодержащие у-сплавы характеризуются более низкими коэффициентами трения К и повышенными значениями абразивной износостойкости є при фрикционном нагружении. Рассмотрены структурные механизмы, объясняющие полученные результаты.

Ключевые слова: высокоазотистые аустенитные сплавы, адгезионное и абразивное изнашивание, трибологические свойства

Введение

Азотсодержащие аустенитные сплавы благодаря хорошему уровню механических и служебных свойств (высокому уровню прочности, пластичности и вязкости разрушения, повышенной коррозионной стойкости, немагнитности и др.) являются перспективными материалами для использования в различных отраслях промышленности [1,2]. При этом большое значение имеет вопрос износостойкости этих сплавов.

Известно, что фрикционное воздействие может приводить к образованию нанокристаллических структур (НКС) в приповерхностном слое металлических материалов. Формирование данных слоев обусловлено интенсивной пластической деформацией материала, которая осуществляется по ротационному механизму. Например, при трении скольжения металлических материалов в поверхностном (≈ 10 µm) слое образуются ультрадисперсные структуры, которые в значительной степени определяют трибологические свойства этих поверхностей [3–5]. Данные структуры можно отнести к НКС: размер микрофрагментов с большеугловыми границами составляет 0.005–0.1 µm.

Проведенные эксперименты показывают, что образующиеся в разных материалах НКС трения, при их относительно близких уровнях дисперсности, разориентировки фрагментов и средней плотности дислокаций ($\rho \approx 5 \cdot 10^{12}$ cm⁻²), весьма сильно отличаются по своим прочностным и трибологическим свойствам. Поэтому очевидно, что необходимы дальнейшие исследования, направленные на выявление структурных факторов, оказывающих наиболее сильное влияние на трибологические свойства НКС трения.

В настоящее время эффективная прочность и износостойкость поверхности аустенитных сплавов с высоким содержанием азота изучены недостаточно полно. В этой связи данная работа посвящена исследованию трибологических свойств и структурных превращений в хромомарганцевых аустенитных сплавах, легированных до ~ 0.8% азота, в условиях адгезионного и абразивного изнашивания.

Материалы и методика исследования

Объектами исследования служили азотсодержащие γ-сплавы 07Х19А0.7Г10С2 и 08Х18А0.8Г20. Для сопоставления полученных результатов использовали также трибологические характеристики сплавов 05Г10, 05Г20, 03Х11Г13, 05Г40 и 07Х18А0.5Г18, отличающихся фазовым составом, структурой и величиной энергии дефектов упаковки (ЭДУ) [4,5].

Трибологические испытания исследованных сплавов проводили на лабораторных установках в условиях трения скольжения пар сплав–сталь и сплав–абразив. Испытания пар сплав–сталь проводили по схеме палец (сплав)–пластина (сталь 45, HRC = 50) в воздушной среде со скоростью скольжения $V_{\rm sl} = 0.07$ m/s при нагрузке F = 294 N. Прирост средней (объемной) температуры в зоне трения образца за счет фрикционного нагрева не превышал ~ 20°C. Формирование НКС происходило в поверхностном слое образцов толщиной ≤ 10 µm в условиях преимущественно адгезионного взаимодействия металлических поверхностей. Испытания на абразивное изнашивание осуществляли по отношению к армко-железу при скольжении образца (сплава) по закрепленному абразиву (шлифовальной бумаге).

Методики проведения испытаний и определения прочностных и трибологических свойств описаны в работах [4,5]. Структуру слоев образцов исследованных сплавов изучали с помощью рентгеновского, электронно-микроскопического и металлографического методов анализа.

Результаты эксперимента и их обсуждение

В таблице и на рис. 1–4 приведены значения микротвердости H_{μ} , сопротивления сдвигу т, коэффициента трения K, интенсивности адгезионного изнашивания *Ih* и абразивной износостойкости є НКС, образующихся на поверхностях трения исследованных сплавов с ОЦК-, ГЦК- и ГПУ-структурами. Видно, что минимальными значениями K (0.25–0.28), *Ih* (3·10⁻⁷–3.5·10⁻⁷) и повышенными значениями є (1.5–2.2) характеризуются азотсодержащие γ-сплавы: 07Х18А0.5Г18, 07Х19А0.7Г10С2 и 08Х18А0.8Г20, а также є-сплавы: 05Г20 и 03Х11Г13.

Таблица

Сплав	Фазовый состав	<u> </u>	τ Pa	K	$Ih \times 10^7$	З
05Г10	α (ОЦК)-фаза	6300	3450	0.55	20	0.5
05Г20	ε (ГПУ)-фаза	5600	1570	0.28	3	1.5
03X11Г13		6250	1560	0.25	3.5	1.9
05Γ40	ү (ГЦК)-фаза	6650	3000	0.45	6	0.8
07X18A0.5Γ18		8100	4650	0.25	2.1	2.2
07Х19А0.7Г10С2		6700	3100	0.27	5.4	1.9
08X18A0.8Г20		7250	2400	0.25	4.7	1.8

Прочностные и трибологические свойства НКС трения исследованных сплавов

Рис. 1. Фазовый состав исследованных сплавов до (*a*) и после (б) обработки трением скольжения (сплав–сталь): $I = 05\Gamma 10$, $2 = 05\Gamma 20$, $3 = 03X11\Gamma 13$, $4 = 05\Gamma 40$, $5 = 07X18A0.5\Gamma 18$, $6 = 07X19A0.7\Gamma 10C2$, $7 = 08X18A0.8\Gamma 20$

Рис. 2. Микротвердость $H_{\mu}(a)$ и сопротивление сдвигу т (б) исследованных сплавов после трения скольжения (сплав–сталь): $I - 05\Gamma 10$, $2 - 05\Gamma 20$, $3 - 03X11\Gamma 13$, $4 - 05\Gamma 40$, $5 - 07X18A0.5\Gamma 18$, $6 - 07X19A0.7\Gamma 10C2$, $7 - 08X18A0.8\Gamma 20$

Рентгеновский фазовый анализ исследованных сплавов показал, что на поверхности трения сплавов 05Г20 и 03Х11Г13 формируется структура ГПУ ϵ -мартенсита в результате ($\gamma + \epsilon$) $\rightarrow \epsilon'$ -превращения (~ 95% ϵ -фазы в сплаве 05Г20 и ~ 90% ϵ -фазы в сплаве 03Х11Г13), а на поверхности трения сплавов 07Х18А0.5Г18, 07Х19А0.7Г10С2 и 08Х18А0.8Г20 – структура ГЦК γ -фазы (содержание α' -фазы < 5%), которые обеспечивают данным сплавам более высокие трибологические свойства. Необходимо отметить, что при одинаковых

Рис. 3. Схема изнашивания (*a*) и коэффициент трения *K* (*б*) исследованных сплавов после обработки в условиях сухого скольжения (сплав–сталь): $I - 05\Gamma 10$, $2 - 05\Gamma 20$, $3 - 03X11\Gamma 13$, $4 - 05\Gamma 40$, $5 - 07X18A0.5\Gamma 18$, $6 - 07X19A0.7\Gamma 10C2$, $7 - 08X18A0.8\Gamma 20$

Рис. 4. Интенсивность адгезионного изнашивания (сплав–сталь) *Ih* (*a*) и абразивная изностойкость (сплав–абразив) ε (*б*) исследованных сплавов: *I* – 05Г10, *2* – 05Г20, *3* – 03Х11Г13, *4* – 05Г40, *5* – 07Х18А0.5Г18, *6* – 07Х19А0.7Г10С2, *7* – 08Х18А0.8Г20

условиях деформации величина деформационного наклепа (микротвердость H_{μ}) ε -фазы, возникающей на поверхности трения сплава 03X11Г13, заметно выше величины $H_{\mu} \varepsilon$ -фазы, образующейся в сплаве 05Г20. Этот факт можно объяснить положительным влиянием хрома на способность ε -мартенсита к деформационному упрочнению [5]. Некоторое уменьшение H_{μ} в НКС азотсодержащих γ -сплавах с ростом концентрации азота, по-видимому, обусловлено подавлением деформационного $\gamma \rightarrow \alpha'$ -превращения (величина $C_{\alpha'}$ уменьшается от ~ 15 до ~ 5%).

НКС ОЦК α-сплава 05Г10 и ГЦК γ-сплава 05Г40 обладают более высокими значениями *K* (0.45–0.55), *Ih* (6·10⁻⁷–2·10⁻⁶) и более низкими значениями ε (0.5–0.8), несмотря на их преимущество в прочностных характеристиках ($H_{\rm u}$, τ) по отношению к НКС ГПУ ε-сплавов.

НКС ε-фазы имеет примерно такие же трибологические свойства, как и ГПУ α-кобальт в аналогичных условиях трения ($K \approx 0.25$, $Ih \approx 10^{-7}$). Низкий коэффициент трения и повышенное сопротивление адгезионному изнашиванию кобальта объясняют развитием легкого базисного скольжения и формированием в поверхностном слое кобальта текстуры трения, которая характеризуется ориентацией плоскостей базиса (0001)_α параллельно поверхности трения [6].

Электронно-микроскопические исследования показали, что структура сплава 05Г20 после закалки состоит из пересекающихся пластин є-фазы охлаждения с габитусом $\{111\}_{\gamma}$ ($C_{\varepsilon} \approx 55\%$) и остаточной γ -фазы ($C_{\gamma} \approx 45\%$) (рис. 5). В аустените присутствуют дефекты упаковки, что обусловлено достаточно низкой величиной ЭДУ ү-фазы [7]. Воздействие трения скольжения приводит

R

Рис. 5. Структура азотсодержащего у-сплава 08Х18А0.8Г20 в исходном (закаленном) состоянии (а, б) и после фрикционного нагружения (в-е): в - светлопольное изображение на расстоянии $h \le 5 \mu m$; c – темнопольное изображение участка e в рефлексе (220) у-фазы; ∂ – светлопольное изображение на расстоянии $h \approx 10-20 \ \mu m$; *е* – темнопольное изображение участка ∂ в рефлексе (311) γ -фазы

к формированию в поверхностном слое НКС, состоящей в основном из кристаллов ε -фазы размером 0.01–0.1 µm. Кроме ε -фазы, НКС содержит также небольшое количество аустенита. С увеличением расстояния от поверхности трения свыше 10 µm размеры фрагментов НКС существенно возрастают, что обусловлено уменьшением интенсивности пластической деформации по глубине активного слоя образца. На расстоянии ~ 20 µm от поверхности трения кристаллы ε -фазы становятся еще больше и уже имеют вид обычных деформированных пластин, как в случае применения традиционных (менее интенсивных) методов деформации [7].

Из полученных результатов (см. таблицу) видно, что НКС ε -фазы в исследованных сплавах, не имеющая заметной текстуры, обладает примерно столь же высокими трибологическими свойствами, что и текстурованная поверхность кобальта. Это свидетельствует о том, что действие базисного скольжения в нанокристаллах ε -фазы, изоморфной α -кобальту, снижает сопротивление НКС сдвигу в направлении действия внешней тангенциальной силы ($\tau \approx 1600$ MPa). Основываясь на результатах работ [7,8], можно предположить, что базисное скольжение, характеризующееся малым (~ 3) числом систем скольжения, облегчает прохождение дислокаций через тело нанокристаллов к границам и тем самым обусловливает снижение напряжений, необходимых для ротации фрагментов исследуемой структуры под действием внешних контактных сил.

В отличие от НКС γ -сплава 05Г40, НКС азотсодержащих γ -сплавов 07Х18А0.5Г18, 07Х19А0.7Г10С2 и 08Х18А0.8Г20 обладают таким же низким коэффициентом трения *K* (0.25–0.27), как и НКС ε -сплавов 05Г20 и 03Х11Г13 (см. таблицу).

Электронно-микроскопические исследования показали, что в структуре азотсодержащих γ -сплавов 07Х18А0.5Г18, 07Х19А0.7Г10С2 и 08Х18А0.8Г20 после закалки присутствуют двойники отжига, отдельные дислокации, дислокационные диполи и мультиполи (рис. 5). Наличие дислокационных мультиполей свидетельствует о склонности исследуемого сплава с азотсодержащей γ -фазой к планарному скольжению [9,10]. Воздействие трения скольжения приводит к образованию в поверхностном слое НКС (размер микрофрагментов составляет 0.01–0.1 µm), которая является типичной структурой азотсодержащих γ -сплавов, деформированных сдвигом под давлением [11]. С увеличением расстояния от поверхности трения свыше 10 µm размеры фрагментов НКС азотсодержащих γ -сплавов заметно возрастают.

Полученные результаты свидетельствуют, что одной из основных причин повышения трибологических свойств НКС азотсодержащих γ-сплавов, повидимому, является подавление поперечного скольжения и, следовательно, активация планарного скольжения в нанокристаллах γ-фазы, что существенно ограничивает число действующих систем скольжения в кристаллах аустенита. В условиях действия ротационного механизма пластичности, вблизи поверхности трения, уменьшение числа систем скольжения в аустените облегчает перемещение дислокаций через тело фрагментов к их границам и, следовательно, снижает сопротивление относительному проскальзыванию микрофрагментов НКС азотсодержащих *γ*-сплавов.

Таким образом, существенное снижение коэффициента трения K и интенсивности адгезионного изнашивания Ih, а также повышение абразивной износостойкости ε НКС ε -сплавов и НКС азотсодержащих γ -сплавов связано в основном с уменьшением числа систем скольжения в нанокристаллах этих сплавов ($n \rightarrow 3$), которое обеспечивает более легкое прохождение дислокаций к границам нанокристаллов. Данные, приведенные в таблице, также показывают, что НКС ε -фазы характеризуются в 3–3.5 раза большей интенсивностью адгезионного изнашивания, чем текстурованная поверхность α -кобальта. Наличие у нанокристаллического материала чрезвычайно сильно развитой системы границ, обладающих избыточной энергией, по-видимому, усиливает адгезионное взаимодействие металлических поверхностей [6].

Выводы

Низкими коэффициентами трения K и повышенными значениями абразивной износостойкости ε обладают НКС азотсодержащих γ -сплавов и НКС ε -сплавов. Развитие в данных сплавах соответственно базисного и планарного скольжения, которые характеризуются меньшим числом систем скольжения, обусловливает снижение сопротивления ротации фрагментов НКС и, следовательно, повышение трибологических свойств.

- 1. О.А. Банных, В.М. Блинов, Дисперсионно-твердеющие немагнитные ванадийсодержащие стали, Металлургия, Москва (1980).
- 2. A.S. Domareva, A.A. Dobrikov, B.M. Efros, Y.E. Beygelzimer, V.N. Varyukhin, High Pressure Research 15, 221 (1997).
- 3. P. Heilman, W.A. Clark, D.A. Rigney, Acta Met. 31, 1293 (1983).
- 4. Л.Г. Коршунов, ФММ № 8, 3 (1992).
- 5. Б.М. Эфрос, Е.С. Студенок, Л.В. Лоладзе, Трение и износ 14, 730 (1993).
- 6. *Д. Бакли*, Поверхностные явления при адгезии и фрикционном воздействии, Машиностроение, Москва (1986).
- 7. *Б.М.* Эфрос, ФТВД **8**, № 2, 82 (1998).
- 8. Л.Г. Коршунов, Н.Л. Черненко, ФММ **63**, 319 (1987).
- 9. Н.Д. Афанасьев, В.Г. Гаврилюк, В.А. Дузь, В.М. Надутов, ФММ № 8, 121 (1990).
- 10. Б.М. Эфрос, Металлы № 3, 95 (1999).
- 11. В.А. Теплов, В.П. Пилюгин, Г.Г. Талуц, Металлы № 2, 109 (1992).

Н.Б. Ефрос, Л.Г. Коршунов, Б.М. Ефрос, О.А. Давиденко, В.М. Варюхін

КОНТАКТНА МІЦНІСТЬ НАНОКРИСТАЛІЧНИХ СТРУКТУР ПОВЕРХОНЬ ТЕРТЯ ВИСОКОАЗОТИСТИХ АУСТЕНІТНИХ СПЛАВІВ

Досліджено вплив концентрації азоту на трибологічні властивості аустенітних сплавів. Показано, що азотовмісні γ -сплави характеризуються більш низькими ко-ефіцієнтами тертя K та підвищеними значеннями абразивної зносостійкості є при фрикційному навантаженні. Розглянуто структурні механізми, що пояснюють отримані результати.

Ключові слова: високоазотисті аустенітні сплави, адгезійне та абразивне зношування, трибологічні властивості

N.B. Efros, L.G. Korshunov, B.M. Efros, A.A. Davidenko, V.N. Varyukhin

LOCAL STRENGTH OF NANOCRYSTAL STRUCTURES OF FRICTION SURFACES OF HIGH-NITROGENOUS AUSTENITIC ALLOYS

The effect of nitrogen concentration on tribological properties of austenitic alloys has been investigated. It is shown that nitrogen-containing γ -alloys are characterized by lower frictional coefficient *K* and increased abrasive wear resistance ε at frictional loading. Structural mechanisms clarifying the obtained results are considered.

Keywords: high-nitrogenous austenitic alloys, adhesive and abrasive wear, tribological properties

Fig. 1. Phase composition of the tested alloys before (*a*) and after (δ) treatment by sliding friction (alloy–steel): $1 - 05\Gamma 10$, $2 - 05\Gamma 20$, $3 - 03X11\Gamma 13$, $4 - 05\Gamma 40$, $5 - 07X18A0.5\Gamma 18$, $6 - 07X19A0.7\Gamma 10C2$, $7 - 08X18A0.8\Gamma 20$

Fig. 2. Microhardness $H_{\mu}(a)$ and shear resistance τ (δ) of the tested alloys after sliding friction (alloy–steel): $I - 05\Gamma 10$, $2 - 05\Gamma 20$, $3 - 03X11\Gamma 13$, $4 - 05\Gamma 40$, $5 - 07X18A0.5\Gamma 18$, $6 - 07X19A0.7\Gamma 10C2$, $7 - 08X18A0.8\Gamma 20$

Fig. 3. The scheme of wear (*a*) and the frictional coefficient *K* (δ) of the tested alloys after the treatment by dry sliding (alloy–steel): $I - 05\Gamma 10$, $2 - 05\Gamma 20$, $3 - 03X11\Gamma 13$, $4 - 05\Gamma 40$, $5 - 07X18A0.5\Gamma 18$, $6 - 07X19A0.7\Gamma 10C2$, $7 - 08X18A0.8\Gamma 20$

Fig. 4. Intensity of adhesive wear (alloy–steel) *Ih* (*a*) and abrasive wear resistance (alloy–abrasive) ε (δ) of the tested alloys: $1 - 05\Gamma 10$, $2 - 05\Gamma 20$, $3 - 03X11\Gamma 13$, $4 - 05\Gamma 40$, $5 - 07X18A0.5\Gamma 18$, $6 - 07X19A0.7\Gamma 10C2$, $7 - 08X18A0.8\Gamma 20$

Fig. 5. The structure of the nitrogen-containing γ -alloy 08X18A0.8 Γ 20 in the initial (hardened) state (a, δ) and after frictional loading (e-e): e – bright-field image at the distance $h \leq 5 \mu$ m; e – dark-field image of e area in reflection of (220) γ -phase; ∂ – bright-field image at the distance $h \approx 10-20 \mu$ m; e – dark-field image of ∂ area in reflection of (311) γ -phase