PACS: 75.47.Gk, 75.47.Lx, 75.75.+a

А.В. Пащенко

ВЛИЯНИЕ ЗАМЕЩЕНИЙ СВЕРХСТЕХИОМЕТРИЧЕСКОГО МАРГАНЦА ИОНАМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ НА СТРУКТУРУ И СВОЙСТВА La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO₃ (B – Cr, Fe, Co, Ni; x = 0.1, 0.2)

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: alpash@mail.ru

Рентгеноструктурным, резистивным, магнитными (χ_{ac} ЯМР ⁵⁵Мп) и магниторезистивным методами установлены закономерности влияния на структуру и свойства замещений сверхстехиометрического марганца ионами переходных 3d-металлов в манганитоперовскитах $La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO_3$ (B – Cr, Fe, Co, Ni; x = 0.1, 0.2). Показано, что изменения параметра ромбоэдрической решетки коррелируют с ионными радиусами замещающих B-ионов, а T_C и магнитная неоднородность – с их магнитным моментом. Наблюдаются два вида магниторезистивного эффекта: первый – вблизи температур фазовых переходов T_{ms} и T_C , вызванный рассеянием носителей заряда на внутрикристаллитных наноструктурных неоднородностях, второй – в низкотемпературной области, обусловленный туннелированием на мезоструктурных межкристаллитных границах. Влияние замещающих 3d-ионов на свойства и резонансную частоту спектров ЯМР ⁵⁵Мп объяснено ослаблением обменных взаимодействий между ионами марганца Mn³⁺ \leftrightarrow Mn⁴⁺ и изменением соотношения Mn³⁺/Mn⁴⁺.

Ключевые слова: манганит-лантановые перовскиты, 3*d*-ионы, фазовые переходы, ЯМР ⁵⁵Мп, магниторезистивные свойства.

Введение

Дискуссионность природы магниторезистивного эффекта, уникальная взаимосвязь магнитных и транспортных свойств, проявляющаяся в сосуществовании фазовых переходов металл-полупроводник (MS) и ферромагнетик-парамагнетик (FM-PM), наличие пространственного фазового и магнитного расслоения, орбитального и зарядового упорядочения сохраняют повышенный интерес в отношении исследований редкоземельных (P3) манганитов. Эти металлооксиды относятся к классу магнитных полупроводников, обладающих колоссальным отрицательным магнитосопротивлением [1]. Среди многочисленных P3-манганитов со структурой перовскита наиболее интересны в научном [2,3] и прикладном [4,5] плане лантан-стронциевые манганиты, содержащие сверхстехиометрический марганец [6,7]. Для таких нестехиометрических РЗ-манганитов характерны наиболее высокие значения температур переходов MS (T_{ms}) и FM–PM (T_C). Кроме того, сверхстехиометрический марганец, растворяясь в перовскитовой структуре, приводит к образованию наноструктурных кластеров и повышению MR-эффекта [8,9]. Особого внимания заслуживают исследования влияния на магниторезистивный эффект замещения сверхстехиометрического марганца ионами переходных металлов [10–12]. В связи с этим представляется актуальной цель данной работы, связанная с установлением закономерностей влияния замещений сверхстехиометрического марганца ионами Cr³⁺, Fe³⁺, Co³⁺, Ni³⁺ на структуру, фазовые переходы и функциональные свойства.

1. Объекты и методы исследований

Объектами исследований являлись керамические образцы, полученные после двухстадийного твердофазного синтеза при 900 и 950°С с последующим спеканием прессовок в интервале 1200–1430°С в режиме медленного нагрева и охлаждения. Получены и изучены образцы нестехиометрических манганит-лантан-стронциевых перовскитов La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO₃, в которых сверхстехиометрический марганец замещали ионами B = Cr³⁺, Fe³⁺, Co³⁺, Ni³⁺ (x = 0.1, 0.2).

Основные методы исследований: 1) рентгеноструктурный анализ в Сиизлучении на установке ДРОН-3; 2) четырехконтактный резистивный метод определения удельного сопротивления ρ на постоянном токе 1 mA в интервале температур 77–450 K; 3) магнитный метод определения абсолютных значений (с учетом влияния размагничивающего фактора образца *N*) дифференциальной магнитной восприимчивости $4\pi N\chi_{ac}$, измеренной в модуляционном поле h_{ac} = = 0.1 Ое с частотой v = 600 Hz в температурном интервале 77–450 K; 4) ЯМР ⁵⁵Mn по методу «спин-эхо» при *T* = 77 K; 5) магниторезистивный метод для определения величины магниторезистивного эффекта MR = ($\rho_0 - \rho_H$)/ ρ_0 в постоянном магнитном поле *H* = 5 kOe в интервале температур *T* = 77–450 K.

2. Результаты и их обсуждение

Согласно рентгеноструктурным данным все керамические образцы $La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO_3$ с x = 0.1 и 0.2 содержали в основном (~ 95%) ромбоэдрическую ($R\bar{3}c$) перовскитовую структуру и следы (~ 5%) тетрагонального гаусманита Mn_3O_4 . Параметр элементарной ячейки *a* зависел от В и *x* при практически одинаковой степени ромбоэдрического искажения ($\alpha \approx 90.40^\circ$). Последнее свидетельствует об одинаковой степени кислородной нестехиометрии и дефектности перовскитовой структуры, которая согласно [9,13] содержит анионные, катионные вакансии и наноструктурные кластеры с Mn^{2+} в *A*-позициях. Установленная корреляция между ионным радиусом *r* [14] и параметром элементарной ячейки *a* (рис. 1) свидетельствует о взаимосвязи этих величин.

Физика и техника высоких давлений 2011, том 21, № 2

Рис. 1. Взаимосвязь ионного радиуса замещающих ионов с параметром элементарной ячейки $La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO_3$: $\circ -x = 0.1$, $\bullet -x = 0.2$

Влияние различных замещающих ионов В³⁺ на транспортные и магнитные свойства иллюстрируют таблица, температурные зависимости удельного сопротивления (рис. 2,*a*) и абсолютной дифференциальной магнитной восприимчивости (рис. 2,*б*) образцов с x = 0.1. Для температур фазовых переходов T_{ms} и T_C четкой корреляции с размерами различных ионов В не наблюдали. Прослеживается слабовыраженная связь T_{ms} и T_C с магнитным моментом µ замещающих ионов В³⁺: $\mu(Ni^{3+}, 3d^7) =$ $= 3.9\mu_B, \, \mu(Cr^{3+}, 3d^3) = 3.9\mu_B, \, \mu(Co^{3+}, 3d^6) = 4.9\mu_B, \, \mu(Fe^{3+}, 3d^5) = 5.9\mu_B$ (где $\mu_B = 9.27 \cdot 10^{-24}$ J/T – магнетон Бора) [15].

Рис. 2. Температурные зависимости удельного сопротивления ρ (*a*), абсолютной дифференциальной магнитной восприимчивости $4\pi N\chi_{ac}$ (δ) и MR-эффекта (ϵ) керамических образцов La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO₃ (x = 0.1): ∇ – Cr, \blacksquare – Fe, \diamond – Co, \bullet – Ni

Таблица

В	t _{ann} , °C	x	Резистивные свойства			Магнитные свойства			Магниторезистивные свойства		
			T_{ms} ,	$\rho(T_{ms}),$	$E_{a},$	T_C^{\min}	T_C^{\max}	FM _V ,	T_n K	MR(77 K)	$MR(T_p)$
			K	mΩ·cm	meV	K		%	<i>p</i> ,	%	
Cr	1430	0.1	333	36.4	91	292	336	87.9	312	11.7	9.3
		0.2	293	92.8	114	258	314	84.7	272	12.2	9.2
Fe	1350	0.1	293	33.5	83	230	326	83.0	273	11.6	6.6
		0.2	I	_	132	132	262	85.2	_	20.0	_
Co	1200	0.1	373	1.69	47	306	353	72.9	333	14.5	5.4
		0.2	323	25.1	71	267	329	71.5	293	10.5	6.3
Ni	1350	0.1	363	14.1	48	302	348	75.1	322	11.2	7.6
		0.2	343	23.3	45	293	337	63.3	312	16.9	7.0

Влияние замещения сверхстехиометрического марганца В-ионами на резистивные, магнитные и магниторезистивные свойства керамики La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO₃

Примечание. t_{ann} – температура спекания керамики; $\rho(T_{ms})$ – максимальное значение удельного сопротивления; E_a – энергия активации; T_C^{min} и T_C^{max} – температура начала и конца FM-перехода; FM_V – объемное содержание FM-фазы при T_C ; T_p – температура пика MR-эффекта; MR(77 K) и MR(T_p) – магниторезистивный эффект соответственно при 77 K и при T_p .

При этом была учтена поправка на то, что часть ионов Ni находится в двухвалентном состоянии: $\mu(\text{Ni}^{2+}, 3d^8) = 2.8\mu_B$, в связи с чем более вероятно для никеля $\mu(\text{Ni}^{2.7+}) = 3.5\mu_B$. В пользу более существенного влияния на T_C величин магнитного момента свидетельствует и сравнительно слабое влияние диамагнитного Al³⁺ на T_C и T_{ms} [16].

Замещающие ионы В³⁺ с большим магнитным моментом приводят к увеличению магнитной неоднородности и к ослаблению сверхобменных (через кислород) взаимодействий между ионами Mn³⁺ \leftrightarrow Mn⁴⁺, находящимися в *B*-октапозициях. В этом плане заслуживает внимания корреляция уширения температурного интервала переходной области магнитного упорядочения ΔT_C с магнитным моментом замещающих ионов $\mu(B^{3+})$, которую иллюстрирует рис. 3. Так, для Fe^{3+} с максимальным магнитным моментом 5.9 μ_B характерны максимальные значения ΔT_C и максимальная магнитная неоднородность. Такое поведение магнитных свойств обусловлено сильным возмущением магнитной системы перовскитовой структуры, связанным с изменением соотношения Mn^{3+}/Mn^{4+} и нарушением обменных взаимодействий $Mn^{3+} \leftrightarrow Mn^{4+}$, что согласуется с данными ЯМР ⁵⁵Мп [12,17]. В пользу такого утверждения свидетельствует уменьшение основной резонансной частоты ЯМР ⁵⁵Мп для x = 0.1 от 375.0 MHz (B = Cr³⁺) до 374.2 MHz (B = Fe³⁺). Основная резонансная частота еще заметнее уменьшается с увеличением x. Так, например, для $La_0 {}_{6}Sr_0 {}_{2}Mn_1 {}_{2-x}Co_xO_3$: 375.4 MHz (x = 0), 374.5 MHz (x = 0.1) и 373.8 MHz (x = 0.2).

Рис. 3. Взаимосвязь ширины магнитного фазового перехода с магнитным моментом замещающих В-ионов в лантан-стронциевом манганите La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO₃: $\circ - x = 0.1$, $\bullet - x = 0.2$

Для большинства замещающих ионов B^{3+} (Cr³⁺, Fe³⁺, Co³⁺) с ростом *х* наблюдается (см. таблицу) увеличение энергии активации E_a , рассчитанной на основании анализа температурных зависимостей ρ в полупроводниковой области [18]. Это также подтверждает ослабление обменных взаимодействий между разновалентными ионами марганца.

Поскольку РЗ-манганиты представляют особый интерес в связи с колоссальным магниторезистивным эффектом, на рис. 2, в приведены температурные зависимости MR образцов с различным замещением сверхстехиометрического марганца ионами В³⁺ при x = 0.1. На зависимостях MR(T) видны две области уве-

личения MR-эффекта: первая – высокотемпературная, в которой пик MRэффекта наблюдается вблизи температур фазовых переходов T_C и T_{ms} , и вторая область – низкотемпературная ($T \sim 77$ K). Пик на зависимостях MR(T) вблизи T_C обусловлен рассеянием носителей заряда на внутрикристаллических магнитных неоднородностях. Монотонное увеличение MR с понижением температуры в низкотемпературной области вызвано уменьшением влияния температурного фактора на величину спиновой поляризации носителей заряда, участвующих в туннелировании на мезоструктурных межкристаллитных границах. Как видно из рис. 2,*в*, MR-эффект в низкотемпературной области заметно превосходит таковой вблизи T_C . По своей природе он должен зависеть от размера кристаллитов и ширины межкристаллитных зон.

Выводы

На основании комплексных исследований влияния замещений сверхстехиометрического марганца ионами переходных металлов на структуру, фазовые переходы, транспортные и магнитные свойства керамических образцов La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO₃ (B = Cr, Fe, Co, Ni; x = 0.1 и 0.2) сделаны следующие выводы.

Установлены закономерности влияния магнитных 3*d*-ионов переходных металлов на температуры фазовых переходов T_{ms} и T_C , энергию активации E_a , магнитную неоднородность, содержание ферромагнитной фазы и магниторезистивный эффект.

Изменение параметра перовскитовой структуры коррелирует с радиусом иона замещения.

Показано, что магнитная неоднородность коррелирует с магнитным моментом замещающих ионов, которые ослабляют обменное взаимодействие $Mn^{3+} \leftrightarrow Mn^{4+}$.

На температурных зависимостях MR наблюдаются два типа магниторезистивного эффекта. Первый тип (вблизи T_C и T_{ms}) связан с рассеянием на внутрикристаллитных наноструктурных неоднородностях, второй (низкотемпературный) – обусловлен эффектом туннелирования на мезоструктурных межкристаллитных границах.

Влияние замещений сверхстехиометрического марганца 3*d*-ионами на фазовые переходы, энергию активации и свойства лантан-стронциевых манганитов объяснено изменениями обменных взаимодействий между разновалентными ионами марганца $Mn^{3+} \leftrightarrow Mn^{4+}$ и их соотношения Mn^{3+}/Mn^{4+} .

Автор выражает благодарность В.К. Прокопенко, Ю.Ф. Ревенко за помощь при проведении измерений резистивных и магнитных свойств.

- 1. Э.Л. Нагаев, УФН **166**, 833 (1996).
- 2. M.B. Salamon, M. Jaime, Phys. Mod. Phys. 73, 583 (2001).
- 3. E.L. Nagaev, Phys. Rep. 346, 387 (2001).
- 4. В.П. Пащенко, М.І. Носанов, О.А. Шемяков, Патент UA № 45153, Бюл. № 9 (2005).
- V. Dyakonov, S. Piechota, K. Piotrowski, A. Szewczyk, H. Szymczak, V. Mikhaylov, A. Shemiakov, A. Pashchenko, V. Pashchenko, Solid State Phenomena 154, 157 (2009).
- Yu.P. Sukhorukov, N.N. Loshkareva, E.V. Mostovshchikova, A.S. Moskvin, E.V. Zenkov, E.A. Gan'shina, I.K. Rodin, A.R. Kaul, O.Yu. Gorbenko, A.A. Bosak, J. Magn. Magn. Mater. 258–257, 274 (2003).
- 7. W. Bazela, V. Dyakonov, V.P. Pashchenko, H. Szymczak, J.H. Hernandez, A. Velasko, Phys. Status Solidi **B236**, 458 (2003).
- 8. В.П. Пащенко, С.И. Харцев, О.В. Черенков, А.А. Шемяков, З.А. Самойленко, А.Д. Лойко, В.И. Каменев, Неорган материалы. **35**, 1509 (1999).
- V.P. Dyakonov, I. Fita, E. Zubov, V. Pashchenko, V. Mikhaylov, V. Prokopenko, Yu. Bukhantsev, M. Areiszewska, W. Dobrowolski, A. Nabialek, H. Szymczak, J. Magn. Magn. Mater. 246, 40 (2002).
- 10. V.P. Pashchenko, A.A. Shemyakov, V.K. Prokopenko, V.N. Derkachenko, V.P. Dyakonov, H. Szymczak, J. Magn. Magn. Mater. 220, 52 (2000).
- 11. А.В. Пащенко, В.П. Пащенко, А.А. Шемяков, Н.Г. Кисель, В.К. Прокопенко, Ю.Ф. Ревенко, А.Г. Сильчева, В.П. Дьяконов, Г. Шимчак, ФТТ **50**, 1257 (2008).
- 12. В.П. Пащенко, А.А. Шемяков, А.В. Пащенко, В.К. Прокопенко, Ю.Ф. Ревенко, В.А. Турченко, В.Н. Варюхин, В.П. Дьяконов, Г. Шимчак, ФНТ **33**, 870 (2007).
- В.П. Пащенко, А.А. Шемяков, И.В. Жихарев, В.К. Прокопенко, А.В. Пащенко, Ю.Ф. Ревенко, А.Г. Сильчева, Е.В. Игнатьева, В.В. Пащенко, Металлофиз. новейшие технол. 27, 1567 (2005).

- 14. R.D. Shannon, Acta Cryst. A32, 751 (1976).
- 15. С.В. Вонсовский, Магнетизм, Наука, Москва (1971).
- В.П. Пащенко, А.В. Пащенко, А.Г. Сильчева, В.К. Прокопенко, Ю.Ф. Ревенко, В.Я. Сычева, Н.Г. Кисель, В.В. Бурховецкий, В.П. Комаров, ФТВД 19, № 3, 24 (2009).
- 17. M.M. Savosta, P. Novák, Phys. Rev. Lett. 87, 137204 (2001).
- 18. N.F. Mott, Adv. Phys. 50, 865 (2001).

О.В. Пащенко

ВПЛИВ ЗАМІЩЕНЬ НАДСТЕХІОМЕТРИЧНОГО МАРГАНЦЮ ІОНАМИ ПЕРЕХІДНИХ МЕТАЛІВ НА СТРУКТУРУ І ВЛАСТИВОСТІ La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO₃ (B – Cr, Fe, Co, Ni; *x* = 0.1, 0.2)

Рентгеноструктурним, резистивним, магнітними (χ_{ac} , ЯМР ⁵⁵Mn) і магніторезистивним методами встановлено закономірності впливу на структуру і властивості заміщень надстехіометричного марганцю іонами перехідних 3*d*-металів в лантанстронцієвих манганітоперовськітах La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO₃ (B – Cr, Fe, Co, Ni; x = 0.1, 0.2). Показано, що зміни параметра ромбоедричної гратки корелюють з іонними радіусами заміщаючих B-іонов, а T_C і магнітна неоднорідність – з їх магнітним моментом. Спостережено два види магніторезистивного ефекту: перший – поблизу температур фазових переходів T_{ms} і T_C , пов'язаний з розсіянням носіїв заряду на внутрішньокристалітних наноструктурних неоднорідностях, а другий – в низькотемпературній області, обумовлений тунелюванням на мезоструктурних міжкристалітних межах. Вплив 3*d*-іонів, що заміщують надстехіометричний марганець, на властивості і резонансну частоту спектрів ЯМР ⁵⁵Mn пояснено послабленням обмінних взаємодій між іонами марганцю Mn³⁺ \leftrightarrow Mn⁴⁺ і зміною співвідношення Mn³⁺/Mn⁴⁺.

Ключові слова: манганіт-лантанові перовскіти, 3*d*-іони, фазові переходи, ЯМР ⁵⁵Мп, магніторезистивні властивості

A.V. Paschenko

EFFECT OF SUBSTITUTIONS OF SUPER-STOICHIOMETRIC MANGANESE WITH IONS OF TRANSITION METALS ON THE STRUCTURE AND THE PROPERTIES OF $La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO_3$ (B – Cr, Fe, Co, Ni; x = 0.1, 0.2)

Using X-ray structural analysis, resistive, magnetic (χ_{ac} , NMR ⁵⁵Mn) and magnetoresistive methods, regularities of the effect of substitutions of super-stoichiometric manganese with ions of transition 3*d*-metals on the structure and the properties of the La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO₃ (B – Cr, Fe, Co, Ni; x = 0.1, 0.2) manganito-perofskites are established. It is shown that the changes of the parameter of rhombohedral lattice correlate to ion radius of the substituting B-ions and T_C and magnetic inhomogeneity are related to the magnetic moment. We have observed two types of magneto-resistive effect: the first one occurs near the temperatures of phase transitions T_{ms} and T_C being caused by the scattering of charge carriers at intercrystalline nano-structure inhomogeneities, the second type is realized within the low-temperature area and determined by tunneling at meso-structure intercrystalline boundaries. The influence of the substituting 3d-ions on the properties and the resonance frequency of NMR ⁵⁵Mn spectra is explained by the weakening of exchange interactions between manganese ions Mn³⁺ \leftrightarrow Mn⁴⁺ and the change of the ration of Mn³⁺/Mn⁴⁺.

Keywords: manganite-lanthan perofskites, 3d-ions, phase transitions, NMR 55 Mn, magneto-resistive properties

Fig. 1. The correlation between ion radius of the substituting ions and the parameter of a low level cell of $La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO_3$: $\circ - x = 0.1$, $\bullet - x = 0.2$

Fig. 2. Temperature dependences of the specific resistance ρ (*a*), absolute differential magnetic susceptibility $4\pi N\chi_{ac}$ (δ) and MR effect (*e*) of the La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO₃ (x = 0.1): $\nabla - Cr$, $\blacksquare - Fe$, $\diamond - Co$, $\bullet - Ni$

Fig. 3. Relation of magnetic phase transition width to the magnetic moment of substituting B-ions in the La_{0.6}Sr_{0.2}Mn_{1.2-x}B_xO₃ lanthane-strontium manganite: $\circ - x = 0.1$, $\bullet - x = 0.2$