PACS: 62.50.+p, 72.20.-i

О.Л. Хейфец, А.В. Тебеньков, А.Л. Филиппов, Э.Ф. Шакиров, Н.В. Мельникова, А.Н. Бабушкин

ВЛИЯНИЕ ВЫСОКИХ ДАВЛЕНИЙ И МАГНИТНЫХ ПОЛЕЙ НА ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА (PbSe)_{0.8}(AgAsSe₂)_{0.2}

Уральский государственный университет пр. Ленина, 51, г. Екатеринбург, 620000, Россия E-mail: olga.kobeleva@usu.ru

В рамках поиска материалов, сочетающих ионную проводимость с сегнетоэлектрическими свойствами, был синтезирован халькогенид (PbSe)_{0.8}(AgAsSe₂)_{0.2}. Проведены исследования его электрических свойств в области частот до 200 kHz при давлениях до 48 GPa и магнитных полях до 1 T с применением метода импедансной спектроскопии. Определены области существенных изменений электрических свойств.

Ключевые слова: высокие давления, импедансная спектроскопия, магнитные поля, сегнетоэлектрики, фазовые переходы

В лаборатории физики экстремальных воздействий на вещество УрГУ проведены исследования разнообразных многокомпонентных халькогенидов серебра и меди [1–4]. Изучение свойств сегнетоэлектрических материалов в широких диапазонах давлений позволяет выявить изменения кристаллической решетки и электронной структуры, открывает возможности создавать на их основе датчики физических параметров.

У соединения AgPbAsSe₃ обнаружены сегнетоэлектрические свойства (максимальное значение диэлектрической проницаемости 55000) [5]. Однако большие значения проводимости не позволили провести измерения кривой поляризации. В рамках поиска материалов, сочетающих ионную проводимость с сегнетоэлектрическими свойствами, были синтезированы халькогениды (PbSe)_x(AgAsSe₂)_{1-x} (x = 0.7-0.9).

Данная работа посвящена изучению электрических свойств образца с x = 0.8 при высоких давлениях в области частот до 200 kHz и при магнитных полях от 0.1 до 1 Т. Исследования проведены при температуре 300 К.

По данным рентгеноструктурного анализа, синтезированный материал представляет собой смесь двух фаз – PbSe и AgAsSe₂. Состав имеет серый цвет, обладает металлическим блеском.

Для генерации давлений до 48 GPa использовали камеру высокого давления с наковальнями типа закругленный конус–плоскость из искусственных

[©] О.Л. Хейфец, А.В. Тебеньков, А.Л. Филиппов, Э.Ф. Шакиров, Н.В. Мельникова, А.Н. Бабушкин, 2011

Рис. 1. Температурные зависимости электропроводности (*a*) и диэлектрической проницаемости (δ) (PbSe)_{0.8}(AgAsSe₂)_{0.2}: \circ – нагревание, • – охлаждение

поликристаллических алмазов «карбонадо» [6]. Электрические свойства образцов исследовали с помощью измерителя-анализатора импеданса RLC-2000 в диапазоне частот 1–200 kHz. При измерениях на постоянном токе сопротивление определяли по падению напряжения на образце. Обнаружено, что при нормальном давлении образец проявляет сегнетоэлектрические свойства (рис. 1).

Результаты и их обсуждение

На рис. 2 приведены барические зависимости относительного изменения сопротивления при нагружении и снятии нагружения с образца в условиях магнитного поля и при его отсутствии. Сопротивление резко падает в области давлений 16–22 GPa. При снятии нагружения сопротивление в несколько раз больше, чем до нагружения. Поведение сопротивления при приложении магнитного поля аналогично поведению в его отсутствие.

Рис. 2. Барические зависимости относительного изменения сопротивления (PbSe)_{0.8}(AgAsSe₂)_{0.2} при постоянном токе в поле 1 T (\triangle , \blacktriangle) и в отсутствие поля (\blacklozenge , \diamond) при нагружении (темные символы) и снятии нагружения (светлые)

Такое поведение сопротивления может быть связано с существованием фазового перехода в образце в области давлений ~ 20 GPa. Фазовый переход может быть обусловлен изменением структуры или изменениями в электронной системе.

Был детально изучен импеданс образца в области давлений, где предположительно существует фазовый переход. Измерения были проведены в отсутствие магнитного поля и в магнитных полях от 0.1 до 1 Т при нагружении образца.

Были измерены и проанализированы годографы импеданса в области

Рис. 3. Годографы импеданса (PbSe)_{0.8}(AgAsSe₂)_{0.2} при разных давлениях *P*, GPa: \diamond , \blacklozenge – 16; \Box , \blacksquare – 18; △, \blacktriangle – 20; \circ , \bullet – 22; ☆, ★ – 24; в поле 1 T – светлые символы, в отсутствие поля – темные

частот 1–200 kHz и магнитных полей 0.1–1 Т. На рис. 3 приведены годографы импеданса при разных давлениях в отсутствие магнитного поля и в магнитном поле 1 Т. С ростом давления действительная и мнимая части импеданса убывают. В области давлений 18–22 GPa наблюдается изменение низкочастотной части годографов.

На рис. 4 представлены зависимости сопротивления от частоты при разных давлениях при отсутствии магнитного поля и в магнитных полях 0.5 и 1 Т. Видно, что при давлениях 16 и 18 GPa сопротивление монотонно убывает с ростом частоты, а при давлениях 18–22 GPa наблюдается немонотонное поведение сопротивления в области низких частот.

Рис. 4. Частотные зависимости сопротивления (PbSe)_{0.8}(AgAsSe₂)_{0.2} при давлениях 16 (*a*), 20 (*б*) и 24 GPa (*в*) в разных магнитных полях, T: \circ − 0, \blacksquare − 0.1, \blacktriangle − 0.5, \square − 1

Рис. 5. Барические зависимости относительного изменения сопротивления (частота 200 kHz) в разных магнитных полях, $T: \bullet -0, \bullet -0.5, \bullet -1$

На рис. 5. приведены барические зависимости относительного изменения сопротивления в разных магнитных полях. Видно, что в области давлений 18–22 GPa наблюдается сильное изменение в поведении сопротивления (наличие минимума и максимума на кривой). Такая картина наблюдается на зависимостях мнимой части импеданса и тангенса угла диэлектрических потерь. Подобное поведение электрических характеристик в магнитном поле обычно связано с возникающим в этой области фазовым переходом.

По результатам исследований были сделаны следующие выводы.

1. В образце (PbSe)_{0.8}(AgAsSe₂)_{0.2} имеется частично обратимый фазовый переход в области давлений 18–22 GPa.

2. По сравнению с образцом AgPbAsSe₃ область фазового перехода смещается в сторону более низких давлений.

Исследования выполнены при частичной финансовой поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. и гранта РФФИ 10-02-96036.

- 1. E.R. Baranova et al., Solid State Ionics 24, 255 (1999).
- 2. E.R. Baranova et al., Solid State Ionics 146, 415 (2002).
- 3. Н.В. Мельникова, О.Л. Хейфец и др., АЭЭ 5, 56 (2007); 5, 40 (2007).
- 4. О.Л. Хейфец, А.Н. Бабушкин, О.А. Шабашова, Н.В. Мельникова, ФНТ **33**, 374 (2007).
- 5. О.Л. Хейфец, Л.Я. Кобелев, Н.В. Мельникова, Л.Л. Нугаева, ЖТФ 77, 90 (2007).
- 6. L.F. Vereshchagin, E.N. Yakovlev, B.V. Vinogradov, G.N. Stepanov, K.Kh. Bibaev, T.I. Alaeva, V.P. Sakun, High Temperatures–High Pressures 6, 499 (1974).

О.Л. Хейфец, О.В. Тебеньков, О.Л. Філіпов, Е.Ф. Шакіров, Н.В. Мельникова, О.М. Бабушкін

ВПЛИВ ВИСОКОГО ТИСКУ І МАГНІТНИХ ПОЛІВ НА ЕЛЕКТРИЧНІ ВЛАСТИВОСТІ (PbSe)_{0.8}(AgAsSe₂)_{0.2}

В рамках пошуку матеріалів, які поєднують іонну провідність з сегнетоелектричними властивостями, було синтезовано халькогенід (PbSe)_{0.8}(AgAsSe₂)_{0.2}. Проведено дослідження його електричних властивостей в області частот до 200 kHz при тиску до 48 GPa і магнітних полях до 1 Т із застосуванням методу імпедансної спектроскопії. Визначено області суттєвих змін електричних властивостей.

Ключові слова: високий тиск, імпедансна спектроскопія, магнітні поля, сегнетоелектрики, фазові переходи

O.L. Kheifets, A.V. Tebenkov, A.L. Filippov, E.F. Shakirov, N.V. Melnikova, A.N. Babushkin

EFFECTS OF HIGH PRESSURES AND MAGNETIC FIELDS ON ELECTRIC PROPERTIES OF (PbSe)_{0.8} (AgAsSe₂)_{0.2}

Within the limits of searching the materials with ionic conductivity and ferroelectric properties, the chalkogenide $(PbSe)_{0.8}(AgAsSe_2)_{0.2}$ has been synthesized. The researches of electrical properties in the frequency range to 200 kHz at pressures to 48 GPa and magnetic fields to 1 T have been performed. The investigation was carried out by the method of impedance spectroscopy. Regions of essential changes of electric properties have been determined.

Keywords: high pressures, impedance spectroscopy, magnetic fields, ferroelectrics, phase transitions

Fig. 1. Temperature dependences of conductivity (*a*) and dielectric permittivity (*b*) of $(PbSe)_{0.8}(AgAsSe_2)_{0.2}$: \circ – heating, \bullet – cooling

Fig. 2. Baric dependences of relative change of resistance of $(PbSe)_{0.8}(AgAsSe_2)_{0.2}$ on *dc* in magnetic field 1T (\triangle , \blacktriangle) and without a field (\circ , \bullet) under load (dark symbols) and with no load (light)

Fig. 3. Hodographs of impedance of AgPbAsSe₃ (PbSe)_{0.8}(AgAsSe₂)_{0.2} at different pressures *P*, GPa: \blacklozenge , \diamondsuit – 16; \Box , \blacksquare – 18; \triangle , \blacktriangle – 20; \circ , \bullet – 22; \diamondsuit , \bigstar – 24; in the field of 1 T – light symbols, without the field – dark

Fig. 4. Frequency dependences of resistance of $(PbSe)_{0.8}(AgAsSe_2)_{0.2}$ for pressures 16 (*a*), 20 (δ) and 24 GPa (ϵ) in different magnetic fields, T: $\circ -0$, $\blacksquare -0.1$, $\blacktriangle -0.5$, $\Box -1$

Fig. 5. Baric dependences of relative change of resistance (frequency 200 kHz) of (PbSe)_{0.8}(AgAsSe₂)_{0.2} in different magnetic fields, T: $\bullet - 0$, $\blacksquare - 0.5$, $\blacktriangle - 1$