PACS: 74.72.-h

А.А. Завгородний¹, А.В. Самойлов¹, Р.В. Вовк¹, М.А. Оболенский¹, З.Ф. Назиров¹, А.Г. Петренко², V.M. Pinto Simoes³

НЕКОТОРЫЕ ОСОБЕННОСТИ ПРОДОЛЬНОЙ ПРОВОДИМОСТИ МОНОКРИСТАЛЛОВ Y_{1-z}Pr_zBa₂Cu₃O_{7-δ} С РАЗЛИЧНЫМ СОДЕРЖАНИЕМ ПРАЗЕОДИМА

¹Харьковский национальный университет им. В.Н. Каразина пл. Свободы, 4, г. Харьков, 61077, Украина

²Донецкий национальный университет ул. Университетская, 24, г. Донецк, 83055, Украина

³IPA_ Instituto Superior Autónomo de Estudos Politécnicos Rua de Xabregas, 20, 1º 1900-440 Lisboa, Portugal

Исследовано влияние допирования празеодимом на проводимость в базисной плоскости ВТСП-монокристаллов $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$. Установлено, что по мере роста концентрации празеодима в интервале $0.0 \le z \le 0.5$ происходит существенное смещение температурных участков, отвечающих переходу вида металл-диэлектрик и режиму реализации псевдощелевой аномалии. При этом участки кривых в окрестности перехода металл-диэлектрик хорошо описываются с помощью асимптотической зависимости, отвечающей реализации в системе квантового критического режима, – так называемого закона «1/3». Показано, что избыточная проводимость $\Delta \sigma(T)$ образцов с промежуточным содержанием празеодима в широком интервале температур $T_f < T < T^*$ подчиняется экспоненциальной температурной зависимости $\Delta \sigma \sim (1 - T/T^*) \exp(\Delta_{ab}^*/T)$ и может быть интерпретирована в терминах теории кроссовера БКШ-БЭК, где T^* представлена как среднеполевая температура сверхпроводящего перехода.

Ключевые слова: избыточная проводимость, допирование, монокристаллы YBaCuO, высокотемпературная сверхпроводимость, переход металл–диэлектрик, кроссовер БКШ–БЭК, псевдощелевое состояние

Известно, что соединения $RBa_2Cu_3O_7$ (R = Y и другие редкоземельные элементы) являются технологически важными структурами для получения новейших перспективных материалов с высокой токонесущей способностью, обеспечения компонент для изготовления ячеек памяти, сверхчувствительных элементов считывания и сверхскоростных линий связи на основе ВТСП. Критическая температура этих соединений, оптимально допированных кислоро-

[©] А.А. Завгородний, А.В. Самойлов, Р.В. Вовк, М.А. Оболенский, А.Г. Петренко, V.M. Pinto Simoes, 2010

дом, $T_c \approx 90$ К и слабо зависит от природы R. При этом CeBa₂Cu₃O_{7- δ} и TbBa₂Cu₃O_{7- δ} не образуют ортоструктуру [1], PmBa₂Cu₃O_{7- δ} радиоактивен, а PrBa₂Cu₃O_{7- δ} не является сверхпроводником («аномалия празеодима») несмотря на наличие орторомбической элементарной ячейки [2]. Особый интерес в этом аспекте представляют соединения с частичной заменой Y на Pr, что, с одной стороны, приводит к частичному подавлению сверхпроводимости, а с другой – позволяет сохранять практически неизменными параметры решетки и кислородный индекс соединения. В частности, исследование влияния примесей Pr на условия и режимы реализации псевдощелевого (ПЩІ) состояния в таких соединениях [1,3] играет важную роль не только для прояснения природы высокотемпературной сверхпроводимости, но и для определения эмпирических путей повышения критических параметров ВТСП-соединений.

В последнее время одной из доминирующих версий возникновения ПЩаномалии в высокотемпературных сверхпроводниках является так называемая кластерная модель [4,5]. Так, например, в недавней теоретической работе [4] в рамках примесного механизма высокотемпературной сверхпроводимости в предположении, что в области, прилегающей к сверхпроводящей фазе со стороны допинга, меньше оптимального (ПШ-области), существуют конечные сверхпроводящие кластеры, а предел сверхпроводящей фазы отвечает порогу существования бесконечного сверхпроводящего кластера, был получен верхний предел ПЩ-состояния как функция допинга. В то же время в экспериментальной работе [5] было установлено, что уменьшение содержания кислорода в сверхпроводнике $ReBa_2Cu_3O_{7-\delta}$ (Re = Y, Ho) приводит к фазовому расслоению в объеме экспериментального образца, которое сопровождается образованием сверхструктур или кластеров с упорядоченным распределением кислородных вакансий, отличаюхся концентрацией. При этом было показано, что критическая температура Т_с и температура открытия псевдощели T^* в ВТСП-соединениях $YBa_2Cu_3O_{7-\delta}$ однозначным образом связаны с размерами сверхпроводящих кластеров, образуемых ионами кислорода. С другой стороны, из литературы [5] известно, что уменьшение содержания кислорода в соединениях YBa₂Cu₃O₇₋₆ приводит к эффекту, качественно подобному эффекту подавления сверхпроводящих параметров при частичной замене иттрия празеодимом [4]. При этом следует отметить, что имеющиеся к настоящему времени данные о степени влияния допирования Рг на проводящие свойства соединения YBaCuO и, в частности, ПЩ-режим остаются в значительной степени противоречивыми. Очевидно, определенную роль здесь играет тот факт, что существенная часть экспериментального материала была получена на керамических и пленочных образцах [3,6,7] различной технологической предыстории.

В данной работе было исследовано влияние примесей Pr в широком интервале концентраций ($0.0 \le z \le 0.5$) на различные режимы проводимости и переход металл–диэлектрик в монокристаллах $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ с различной критической температурой при протекании транспортного тока в базисной *ab*-плоскости.

Монокристаллы YBa₂Cu₃O_{7- δ} выращивали по раствор-расплавной технологии [8]. Для получения кристаллов с частичной заменой Y на Pr (Y_{1-z}Pr_zBa₂Cu₃O_{7- δ}) в начальную шихту добавляли Pr₅O₁₁ в соответствующем процентном соотношении. Режимы выращивания и насыщения кристаллов кислородом были такими же, как и для нелегированных монокристаллов [8]. В качестве начальных компонент для выращивания кристаллов использовали соединения Y₂O₃, BaCO₃, CuO и Pr₅O₁₁. Электросопротивление в *ab*-плоскости измеряли по стандартной четырехконтактной методике на постоянном токе до 10 mA. Температуру образца определяли платиновым терморезистором. Параметры исследованных образцов представлены в таблице.

Таблица

Кристалл	<i>Т</i> _с , К	ρ _{<i>ab</i>} (300), μΩ·cm	T^* , K	Δ^*_{ab} , K	ε ₀	α_{3D}	α_{2D}	$\xi_c(0), {\rm \AA}$
K1	91.74	155	143	1001.35	0.064	-0.499	-1.012	1.48
K2	85.78	255	110	1298.70	0.067	-0.528	-1.039	1.51
K3	73.75	287.78	127	700.26	0.111	-0.504	-1.017	1.95
K4	67.33	326.89	137.5	324.60	0.242	-0.501	-1.023	2.88
K5	51.74	436.43	187	104.38	0.64	-0.492	-1.042	4.68
K6	45.2	514.01	219	14.83	1.381	-0.495	-1.017	6.875
K7	33.9	693.14	249	7.40	0.286	-0.462	-1.048	3.13
K8	30.42	749.58	265.5	1.5	0.069	-0.450	-1.011	1.54

Параметры экспериментальных образцов

Температурные зависимости удельного электросопротивления в *ab*-плоскости ρ_{ab} кристаллов Y_{1-z}Pr_zBa₂Cu₃O_{7- δ} показаны на рис. 1. Видно, что по мере увеличения содержания празеодима электросопротивление образцов возрастает, а критическая темература понижается, что согласуется с литературными данными [2,3,6]. При этом следует отметить, что при концентрациях празеодима $0.0 \le z \le 0.34$ зависимости $\rho_{ab}(T)$ являются квазиметаллическими, в то время как при последующем росте концентрации празеодима эти кривые приобретают вид с характерным термоактивационным прогибом.

На рис. 2 эти же зависимости приведены в координатах $\ln[\rho_{ab}/T]-1/T$. Видно, что экспериментальные кривые имеют вид прямых в некотором интервале температур, который отвечает их описанию посредством аналитического выражения:

$$\rho(T) = AT \exp(\Delta/T), \qquad (1)$$

где A – некоторая константа, Δ – энергия активации. При последующем понижении температуры наблюдается более быстрое изменение $\rho_{ab}(T)$, что согласно классическим критериям Мотта [9] может служить достоверным признаком реализации в системе перехода металл–диэлектрик андерсоновского типа.

Рис. 1. Температурные зависимости избыточной проводимости ρ_{ab} монокристаллов $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ для различных концентраций празеодима *z*: 1 - 0.0, 2 - 0.05, 3 - 0.19, 4 - 0.23, 5 - 0.34, 6 - 0.43, 7 - 0.48, 8 - 0.5. Стрелками показаны температуры перехода в ПЩ-режим T^* . Штриховые линии – экстраполяция линейного участка в нулевое значение температуры

Рис. 2. Зависимости $\ln[\rho_{ab}/T] - 1/T$ при различной концентрации празеодима. Обозначения кривых те же, что на рис. 1

Рис. 3. Зависимости $1/\rho_{ab}-T^{1/3}$ при различной концентрации празеодима. Обозначения кривых те же, что на рис. 1. Стрелки показывают точки, в которых начинается систематическое отклонение кривых от линейной зависимости

Действительно, как показал проведенный анализ наших экспериментальных данных (рис. 3), в области температур, в которой наблюдается систематическое отклонение экспериментальных точек от линейной зависимости в координатах $\ln[\rho_{ab}/T]-1/T$, кривые хорошо описываются при помощи асимптотической зависимости – так называемого закона «1/3» [10]:

$$1/\rho \propto T^{1/3} \,. \tag{2}$$

Такое поведение зависимостей $\rho(T)$ уже наблюдалось ранее экспериментально для аморфных сплавов Gd–Sn [11]. Согласно [10] зависимость вида (2) следует из скейлингового описания окрестности перехода металл–диэлектрик в случае реализации в системе так называемого «критического» режима, при котором проводимость носит в основном квантовый характер. В данной работе мы не проводим подробное рассмотрение этого вопроса, оставляя более детальный анализ для отдельного сообщения.

Как известно из литературы [10], переход Андерсона может происходить также и в веществах, которые не являются аморфными, но одновременно

имеют определенную степень неупорядоченности. В соединениях системы 1-2-3 роль такого фактора могут играть и разупорядочение лабильной компоненты [8], и индуцируемая допированием празеодима частичная кластеризация экспериментального образца. Так, согласно существующим в настоящее время теоретическим моделям (см., напр., [12]), допирование ВТСП-купратов путем иновалентного замещения или изменения содержания кислорода вызывает распад системы на электронейтральные области двух типов – металлические, с высокой концентрацией носителей и диэлектрические. При этом вид доменов может «навязываться» и упорядочивающимися допантами. В данном случае нас интересует вопрос, каким образом вышеупомянутые особенности могут быть связаны с проявлением ПЩ-аномалии, о которой шла речь во вступительной части работы. Как впервые указал Мотт [10], появление ПЩ (или минимума плотности состояний) можно ожидать в случае, когда полосы проводимости и валентная в соединении слабо перекрываются. Такая ситуация может реализоваться, в частности, в случае, когда изменяются среднее расстояние между атомами, состав или координационное число, которые сопровождают переход металл-изолятор.

Как было показано в [4,5,13], температура открытия псевдощели T° однозначно связана с размерами сверхпроводящих кластеров. Известно, что для насыщения кристаллов Y_{1-z}Pr_zBa₂Cu₃O_{7- δ} кислородом необходим отжиг в его потоке на протяжении суток при температуре 400°С. Типичные размеры кристаллов составляют около 1 × 1 × 0.1 mm и, следовательно, расстояние, на которое диффундирует кислород при указанных выше условиях, равняется 0.1–1 mm. Поскольку коэффициент диффузии $D \sim \exp(-U/T)$, энергия активации $U = 1.1 \cdot 10^4$ K, можно оценить расстояние, на которое может диффундировать кислород на протяжении суток при комнатных температурах: $L = L_0 \{\exp(U/300) / \exp(U/700)\}^{1/2} = 30-300$ Å. Эта величина находится в разумном соответствии с оценками размеров сверхпроводящих кластеров, полученных в теоретических работах [4,13].

Очевидно, что внесение примесей празеодима должно определенным образом сказываться на размерах кластеров [4], которые могут быть отдельными сверхпроводящими фазами, а также на достижении порога перколяции по ним. Это, в свою очередь, должно отражаться на зависимостях $\rho_{ab}(T)$. Действительно, как видно из рис. 1, при увеличении концентрации празеодима происходит существенное сужение линейного участка зависимости $\rho_{ab}(T)$ в области относительно высоких температур. Последнее отражается в повышении величины температуры T^* , при которой начинается систематическое отклонение экспериментальных точек вниз от линейной зависимости. Это, в свою очередь, возможно в случае фазового расслоения допированных празеодимом образцов при изменении пространственного распределения и размеров кластеров низко- и высокотемпературной фаз.

Как видно из рис. 1, при уменьшении температуры ниже некоторого характерного значения T^* происходит отклонение $\rho_{ab}(T)$ от линейной зависимости, свидетельствующее о появлении избыточной проводимости, которая, как уже отмечалось выше, обусловлена переходом к ПЩ-режиму [4,5]. При этом для образца с примесью празеодима $0.05 \ge z$ область линейной зависимости $\rho_{ab}(T)$ существенно расширяется по сравнению с беспримесным кристаллом, а температура T^* смещается в область низких температур более чем на 30 К. Это, в свою очередь, свидетельствует о значительном сужении температурного интервала существования избыточной проводимости. Следует отметить, что подобное поведение кривых $\rho_{ab}(T)$ достаточно необычно, поскольку до настоящего времени при допировании соединений YBaCuO празеодимом при концентрациях $z \ge 0.2$ наблюдался обратный эффект смещения T^* в сторону более высоких температур [3].

Как отмечалось выше, в базисной плоскости на зависимостях $\rho_{ab}(T)$ в области относительно высоких температур достаточно широкий линейный участок сохраняется даже при значительной степени дефицита кислорода $z \ge 0.34$. Для объяснения подобной особенности в случае беспримесных образцов YBa₂Cu₃O_{7- δ} был предложен целый ряд различных теоретических моделей, наиболее известными из которых являются так называемая RVB-теория [14] и модель NAFL [15]. Согласно первой рассеяние в ВТСП-соединениях осуществляется посредством взаимодействия носителей с двумя типами квазичастичных возбуждений – спинонов и холонов [14]. При этом температурная зависимость электросопротивления предполагает помимо линейного по температуре члена наличие дополнительного слагаемого, пропорционального 1/*T* [14]:

$$\rho(T) = AT^{-1} + BT \,. \tag{3}$$

Действительно, как видно из рис. 4, зависимости $\rho_{ab}(T)$ при относительно малом ($z \le 0.23$) уровне допирования празеодимом достаточно хорошо спрямляются в координатах $\rho T - T^2$.

Рис. 4. Температурные зависимости электросопротивления в координатах $\rho T - T^2$ в *аb*-плоскости. Обозначения кривых те же, что на рис. 1. Штриховые линии – экстраполяция линейных участков экспериментальных зависимостей

Однако в случае средне- и слабодопированных празеодимом образцов экспериментальные кривые уже не удается удовлетворительно описать зависимостью вида (3). Согласно модели NAFL [15] рассеяние носителей в ВТСПсистемах определяется антиферромагнитным взаимодействием. При этом наличие линейного участка на зависимостях $\rho_{ab}(T)$ свидетельствует о стабильной интенсивности рассеяния нормальных носителей и служит достоверным признаком нормального состояния системы. Однако следует отметить, что ни одна из теоретических моделей, объясняющих такое поведение кривых $\rho_{ab}(T)$ в области относительно высоких температур, не смогла удовлетворительно описать отклонение электросопротивления от линейной зависимости при температурах ниже некоторого характерного значения T^* . Как уже отмечалось выше, согласно современным представлениям такое поведение зависимостей $\rho_{ab}(T)$ обусловлено переходом к ПЩ-режиму.

В настоящее время в литературных источниках интенсивно дискутируются два основных сценария возникновения ПЩ-аномалии в ВТСП-системах. Согласно первому их возникновение связано с флуктуациями ближнего порядка «диэлектрического» типа, имеющими место у недодопированных составов (см., напр., обзор [16]). Второй сценарий предполагает формирование куперовских пар уже при температурах существенно выше критической $T^* >> T_c$ с последующим установлением их фазовой когерентности при $T < T_c$ [17,18]. Однако, несмотря на весьма обширный экспериментальный материал, накопленный к настоящему времени, этот вопрос до сих пор остается окончательно не выясненным.

Температурную зависимость проводимости при $T < T^*$ можно получить из соотношения:

$$\Delta \sigma = \sigma - \sigma_0, \qquad (4)$$

где $\sigma_0 = \rho_0^{-1} = (A + BT)^{-1}$ – проводимость, определяемая экстраполяцией линейного участка в нулевое значение температуры, а $\sigma = \rho^{-1}$ – экспериментально измеряемое значение проводимости в нормальном состоянии.

Температурные зависимости избыточной проводимости экспериментальных образцов в координатах $\ln\Delta\sigma - 1/T$ показаны на рис. 5. Видно, что при уровне допирования празеодимом $z \le 0.43$ (кривые 1-6) эти зависимости в достаточно широком температурном интервале имеют вид прямых, что соответствует их описанию посредством соотношения

$$\Delta \sigma \sim \exp(\Delta_{ab}^* / T), \qquad (5)$$

где Δ_{ab}^* – величина, определяющая некоторый термоактивационный процесс через энергетическую щель – «псевдощель». При увеличении концентрации празеодима до $z \ge 0.48$ (кривые 7, 8 – вставка рис. 5) эти кривые приобретают вид с характерным низкотемпературным минимумом, о чем более подробно будет сказано ниже. Как видно из таблицы и рис. 5, величина псевдощели, рассчитанной согласно (5), быстро уменьшается при увеличении содержания празеодима. Экспоненциальная зависимость $\Delta \sigma(T)$ уже наблюдалась ранее на пленочных [17], керамических [19] и допированных магнием образцах YBaCuO [20] с сопоставимыми значениями величины Δ_{ab}^* . Как было показано в [17], аппроксимация экспериментальных данных может быть сущест-

Рис. 5. Температурные зависимости избыточной проводимости в *ab*-плоскости для монокристаллов K1–K8 (вставка – кривые 7, 8) в координатах $\ln\Delta\sigma$ –1/*T*. Штриховые линии – аппроксимация экспериментальных кривых уравнением (5). Обозначения кривых на рисунке и вставке те же, что на рис. 1

венно расширена посредством введения множителя $(1 - T/T^*)$. В этом случае избыточная проводимость оказывается пропорциональной плотности сверх-проводящих носителей $n_s \sim (1 - T/T^*)$ и обратно пропорциональной числу пар ~ $\exp(-\Delta^*/kT)$, разрушенных тепловым движением:

$$\Delta \sigma \sim (1 - T/T^*) \exp(\Delta_{ab}^*/T). \qquad (6)$$

При этом T^* рассматривается как среднеполевая температура сверхпроводящего перехода, а температурный интервал $T_c < T < T^*$, в котором существует ПЩ-состояние, определяется жесткостью фазы параметра порядка, убывающей по мере возрастания дефицита кислорода или концентрации

допирующего элемента. Таким образом, используя методику, предложенную в [17], по экспериментальной кривой $\ln\Delta\sigma$ можно построить зависимость $\Delta_{ab}^{*}(T)$ непосредственно до T^{*} .

На рис. 6 показаны температурные зависимости псевдощели в приведенных координатах $\Delta^*(T)/\Delta_{\max} - T/T^*$ (Δ_{\max} – значение Δ^* на плато вдали от T^*). Как отмечалось ранее, температурные зависимости псевдощели были также получены в теоретической работе [18]. В общем виде эти зависимости описываются уравнением

$$\Delta(T) = \Delta(0) - \Delta(0) \sqrt{\frac{\pi}{2}} \sqrt{\frac{T}{\Delta(0)}} \exp\left[-\frac{\Delta(0)}{T}\right] \left[1 + \operatorname{erf}\left(\sqrt{\frac{\sqrt{x_0^2 + 1} - 1}{T/\Delta(0)}}\right)\right], \quad (7)$$

где $x_0 = \mu/\Delta(0)$ (μ – химпотенциал системы носителей, $\Delta(0)$ – величина энергетической щели при T = 0), а erf(x) – функция ошибок.

В предельном случае $x_0 \to \infty$ (слабого спаривания) аналитическое выражение (7) принимает вид

$$\Delta(T) = \Delta(0) - \Delta(0)\sqrt{2\mu\Delta(0)T} \exp\left[-\frac{\Delta(0)}{T}\right],\tag{8}$$

хорошо известный в теории БКШ. В то же время для предела сильных взаимодействий в 3-мерном случае ($x_0 < -1$) формула (7) преобразуется в

$$\Delta(T) = \Delta(0) - \frac{8}{\sqrt{\pi}} \sqrt{-x_0} \left(\frac{\Delta(0)}{T}\right)^{3/2} \exp\left[-\frac{\sqrt{\mu^2 + \Delta^2(0)}}{T}\right].$$
 (9)

Рис. 6. Температурные зависимости псевдощели кристаллов К1–К8 в приведенных координатах $\Delta^*(T)/\Delta^*_{max} - T/T^*$ (Δ^*_{max} – значение Δ^* на плато вдали от T^*). Нумерация кривых на рисунке отвечает нумерации на рис. 1 (––– $1, -0-2, -\Delta-3, -\nabla-4, -0-5, -\Delta-6, -\nabla-7, -0-8$). Штриховые линии – зависимости $\Delta^*(T)/\Delta(0)$ от T/T^* , рассчитанные согласно [18] для значений параметра кроссовера $\mu/\Delta(0) = 10$ (предел БКШ), –2, –5, –10 (предел БЭК) и показанные линиями 9–12

Зависимости $\Delta^*(T)/\Delta(0)$ от T/T^* , рассчитанные согласно (8), (9) [18], в приближении среднего поля в рамках теории кроссовера БКШ–БЭК для значений параметра кроссовера $\mu/\Delta(0) = 10$ (предел БКШ), -2, -5, -10 (предел БЭК) показаны на рис. 6 штриховыми линиями 9–12 соответственно.

Видно, что в случае образцов, слабодопированных празеодимом ($z \le 0.2$, кривые 1-3), температурные зависимости псевдощели показывают достаточно значительное расхождение с теорией [18], как это уже наблюдалось ранее для пленочных образцов YBaCuO с малым уровнем отклонения от кислородной стехиометрии [17]. Такая же тенденция наблюдается и для образцов с максимальным содержанием празеодима ($z \ge 0.43$, кривые 7, 8). При этом характерный максимум (соответствующий минимуму на вставке к рис. 5), который наблюдается для этих двух образцов, может быть обусловлен переходом к так называемому SDW-режиму, как это уже наблюдалось в [21] для недодопированных образцов новых ВТСП-соединений системы SmFeAsO. В то же время для образцов со средним составом ($0.23 \le z \le 0.39$, кривые 4-7), учитывая некоторую условность определения величины открытия псевдощели T^* по отклонению зависимости $\rho_{ab}(T)$ от линейного поведения, согласие эксперимента с теорией можно считать удовлетворительным.

Как видно из рис. 5, по мере приближения к T_c происходит резкое возрастание величины $\Delta \sigma$. Из теории [22] известно, что вблизи T_c избыточная проводимость обусловлена процессами флуктуационного спаривания носителей, вклад которых в проводимость при $T > T_c$ определяется степенными зависимостями вида

$$\Delta \sigma_{2D} = \frac{e^2}{16\hbar d} \varepsilon^{-1},\tag{10}$$

$$\Delta \sigma_{3D} = \frac{e^2}{32\hbar\xi_c(0)} \varepsilon^{-1/2},\tag{11}$$

где $\varepsilon = (T - T_c)/T_c$, *е* – заряд электрона, ξ_c – длина когерентности вдоль оси **с** при $T \to 0$, *d* – характерный размер двумерного слоя. В нашем случае T_c определялась в точке максимума на зависимостях $d\rho_{ab}(T)/dT$ (рис. 7) в области сверхпроводящего перехода, соответствующей высокотемпературной фазе, согласно методике, предложенной в [23]. При этом, как видно из рис. 7, увеличение содержания празеодима приводит к возрастанию ширины сверхпроводящего перехода, а в случае концентраций $z \ge 0.34$ – к появлению небольшого дополнительного пика на зависимостях $d\rho_{ab}(T)/dT$. Последнее является достоверным признаком фазового расслоения в объеме экспериментального образца [5].

Рис. 7. Зависимости $d\rho_{ab}/dT-T$ в области СП-переходов образцов К1–К8. Обозначения те же, что на рис. 1

На рис. 8 представлены температурные зависимости $\Delta\sigma(T)$ тех же образцов в координатах $\ln\Delta\sigma$ -lnɛ. Видно, что в области температур между T_c и $(1.05-1.1)T_c$ (при различной концентрации празеодима) экспериментальные кривые удовлетворительно аппроксимируются прямыми с углом наклона $tg\alpha_1 \approx -0.5$, который соответствует показателю степени -1/2 в уравнении (11), что свидетельствует о трехмерном характере флуктуационной сверхпроводимости в этом температурном интервале. При дальнейшем повышении температуры скорость уменьшения $\Delta\sigma$ существенно возрастает ($tg\alpha_2 \approx -1$), что, в свою очередь, можно рассматривать как указание на изменение размерности фазового перехода. Как следует из (10) и (11), в точке 2D-3D кроссовера

$$\xi_c(0)\varepsilon_0^{-1/2} = d/2.$$
 (12)

В этом случае, определив значение ε_0 и используя литературные данные о зависимости межплоскостного расстояния от δ [24] ($d \approx 11.7$ Å), можно вычислить значения $\xi_c(0)$. Как видно из таблицы и рис. 9, величина $\xi_c(0)$,

Рис. 8. Температурные зависимости избыточной проводимости в *ab*-плоскости для монокристалов К1–К6 в координатах $\ln\Delta\sigma$ –Inε. Обозначения кривых те же, что на рис. 1. Штриховые линии – аппроксимация экспериментальных кривых прямыми с углом наклона $\alpha_1 \approx -0.5$ (3*D*-режим) и $\alpha_2 \approx -1.0$ (2*D*-режим). Стрелочками показаны точки 2*D*–3*D* кроссовера. На вставке (*a*) приведены те же зависимости для образцов К7 и K8, на вставке (*б*) – концентрационные зависимости относительной ширины $t^* = (T^* - T_f^{3D})/T_f^{3D}$ ПЩ-режима

рассчитанная согласно (12), растет более чем в четыре раза по мере повышения содержания празеодима в образце от z = 0 до $z \le 0.43$ и соответственно понижения T_c от 91.74 до 45.2 К. Это качественно согласуется со значениями величины $\xi_c(0)$, полученными для беспримесных образцов YBaCuO при понижении содержания кислорода [8]. В то же время для образцов с $z \ge 0.48$ наблюдается достаточно резкое снижение величины $\xi_c(0)$, что может быть связано с общим подавлением сверхпроводящих характеристик. В пользу этого предположения свидетельствует и очень резкое (более чем на два порядка) снижение абсолютного значения величины псевдощели Δ_{ab}^* (см. рис. 9) при увеличении концентрации празеодима до z = 0.5.

Рис. 9. Концентрационные зависимости величины псевдощели $\Delta_{ab}^{*}(z)$ и поперечной длины когерентности $\xi_{c}(0, z)$, рассчитанные согласно формулам (5) и (12) соответственно

Все вышеперечисленные особенности могут быть обусловлены общим смещением проводящей подсистемы в область фазовой диаграммы, в которой свойства нормального состояния определяются антиферромагнитными корреляциями. Здесь следует отметить, что использованная нами в настоящей работе экспериментальная методика, связанная с измерением такой интегральной характеристики, как электросопротивление, не позволяет с достаточной степенью достоверности напрямую определять степень влияния антиферромагнитных корреляций на флуктуационную проводимость и псевдощель. С другой стороны, как отмечалось выше, согласно современным представлениям антиферромагнитные переходы спинов обычно приводят к появлению отчетливо выраженных максимумов на зависимостях $\Delta_{ab}^*(T)$ [21], что наблюдается на наших экспериментальных кривых для образцов с концентрациями празеодима $z \ge 0.43$. Это, в свою очередь, можно считать косвенным аргументом в пользу ранее высказанного предположения.

Оценить относительную протяженность существования ПЩ-режима как $t^* = (T^* - T_f^{3D})/T_f^{3D}$ можно, определив температуру перехода в трехмерный флуктуационный режим T_f^{3D} , в точке отклонения величины $\Delta \sigma$ вверх от линейной зависимости при понижении температуры [17]. Результаты расчетов для наших образцов показаны на вставке к рис. 8. Видно, что при возрастании степени допирования празеодимом происходит более чем шестикратное относительное расширение температурной области реализации ПЩ: $t^* = 0.5302-3.4895$, что в целом качественно согласуется с результатами, полученными для беспримесных образцов YBaCuO [5,17] при понижении содержания кислорода.

Однако при минимальной степени допирования празеодимом z = 0.05 наблюдается более чем двукратное сужение относительной ширины t^* , по сравнению с беспримесным образцом YBaCuO оптимального по кислороду состава, до значения $t^{*} = 0.254$. Как отмечалось выше, при этой же концентрации празеодима наблюдается аномальное (более чем на 30 К) расширение линейного участка зависимости $\rho_{ab}(T)$. Подобное поведение кривых $\rho_{ab}(T)$ наблюдалось также в ранних работах на керамических [6] и пленочных [7] образцах YBaCuO, слаболегированных празеодимом. Вероятно, этот эффект может быть связан с особенностями индуцированных добавками празеодима процессов кластеризации в соединениях Y_{1-x}Pr_xBa₂Cu₃O_{7-δ}. В отличие от беспримесных образцов YBa₂Cu₃O_{7-б} формирование кластеров в оптимальдопированных кислородом соединениях Y_{1-x}Pr_xBa₂Cu₃O₇₋₆, но повидимому, происходит при достижении определенной пороговой концентрации празеодима [24]. При относительно малом ($z \le 0.1$) содержании празеодима процесс образования таких кластеров, вероятно, в значительной степени понижен. В этом случае легирование празеодимом приводит к общему увеличению концентрации точечных дефектов, которые являются эффективными центрами рассеяния нормальных и флуктуационных носителей. Действительно, согласно литературным данным [25] празеодим в соединении $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ способен обладать мощным распаривающим воздействием, что может затруднять флуктуационное формирование нескоррелированных бозонов, ответственных за появление избыточной проводимости при температурах ниже T^* . Это, в свою очередь, должно приводить к понижению абсолютной величины T^* , что и наблюдается в нашем случае.

В заключение кратко просуммируем основные результаты, полученные в настоящей работе. Приведенная выше совокупность экспериментальных результатов позволяет сделать вывод о том, что увеличение концентрации празеодима в сверхпроводнике Y_{1-z}Pr_zBa₂Cu₃O_{7-δ} может приводить к фазовому расслоению в объеме экспериментального образца и сопровождаться образованием сверхструктур или кластеров с различной Т_с. Оценены характерные размеры кластеров, которые хорошо согласуются с теоретическими расчетами, проведенными в рамках кластерной модели формирования ПШаномалии в ВТСП. Установлено, что по мере роста концентрации празеодима в интервале $0.0 \le z \le 0.5$ происходит существенное смещение температурных участков, отвечающих переходам вида металл-диэлектрик и режиму реализации ПЩ-аномалии. При этом участки кривых на температурном интервале, соответствующем переходу металл-диэлектрик, хорошо описываются посредством асимптотической зависимости, отвечающей реализации в системе квантового критического режима, - так называемого закона «1/3». Избыточная проводимость $\Delta \sigma(T)$ монокристаллов $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ в широком интервале температур $T_f < T < T^*$ подчиняется экспоненциальной температурной зависимости $\Delta \sigma \sim (1 - T/T^*) \exp(\Delta_{ab}^*/T)$, а в случае приближения к T_c удовлетворительно описывается в рамках теоретической модели Асламазова-Ларкина. Температурная зависимость псевдощели образцов с промежуточным содержанием празеодима $0.23 \le z \le 0.39$ удовлетворительно описывается в рамках теории кроссовера БКШ-БЭК. Абсолютные значения величины поперечной длины когерентности $\xi_c(0)$ и псевдощели Δ_{ab}^* изменяются с различными знаками производных при варьировании содержания празеодима. По мере роста $\xi_c(0)$ величина псевдощели Δ_{ab}^* уменьшается (и наоборот), что обусловлено общим подавлением сверхпроводимости при увеличении концентрации празеодима. Легирование монокристаллов YBaCuO малыми добавками празеодима $z \approx 0.05$ приводит к необычному эффекту сужения температурного интервала реализации ПШ-режима, тем самым удлиняя область линейной зависимости $\rho(T)$ в *ab*-плоскости, что, вероятно, связано с особенностями индуцирования процессов кластеризации.

- 3. H.B. Radousky, J. Mater. Res. 7, 1917 (1992).
- 4. И.А. Чабан, ФТТ **50**, 769 (2008).

^{1.} A.I. Chroneos, I.L. Goulatis and R.V. Vovk, Acta Chim. Slov. 54, 179 (2007).

^{2.} *Физические* свойства высокотемпературных сверхпроводников, Д.М. Гинзберг (ред.), Мир, Москва (1990).

- 5. R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, V.I. Beletskii, A. Chroneos, Physica C469, 203 (2009).
- 6. A. Kebede et al., Phys. Rev. B40, 4453 (1991).
- 7. А.Л. Соловьев, В.М. Дмитриев, ФНТ **32**, 753 (2006).
- 8. M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko, N.N. Chebotaev, ФНТ 32, 746 (2006).
- 9. N.F. Mott, Metal-insulator transition, Word Scientific, London (1974).
- 10. В.Ф. Гантмахер, В.Н. Зверев, В.М. Теплинский, О.И. Баркалов, ЖЭТФ **103**, 1460 (1993).
- 11. Y. Imry, J. Appl. Phys. 52, 1817 (1981).
- 12. М.А. Иванов, В.М. Локтев, ФНТ 25, 1325 (1999).
- 13. К.В. Мицен, О.М. Иваненко, Письма в ЖЭТФ 82, 144 (2005).
- 14. P.W. Anderson, Z. Zou, Phys. Rev. Lett. 60, 132 (1988); P.W. Anderson, Phys. Rev. Lett. 67, 2092 (1991).
- 15. B.P. Stojkovic, D. Pines, Phys. Rev. B55, 8567 (1997).
- 16. M.V. Sadovskii, Physics-Uspekhi 171, 539 (2001).
- 17. Д.Д. Прокофьев, М.П. Волков, Ю.А. Бойков, ФТТ 45, 1168 (2003).
- 18. E. Babaev, H. Kleinert, Phys. Rev. B59, 12083 (1999).
- 19. А.Ф. Прекул, В.А. Рассохин, А.Б. Рольщиков, Н.И. Щеголихина, С.В. Ярцева, СФХТ **3**, 381 (1990).
- 20. Anand Vyas, C.C. Lam, L.J. Shen, Physica C341, 935 (2000).
- 21. Ю.А. Изюмов, Э.З. Курмаев, УФН 178, 1307 (2008).
- 22. Л.Г. Асламазов, А.И. Ларкин, ФТТ 10, 1104 (1968).
- 23. L. Mendonca Ferreira et al., Phys. Rev. B69, 212505 (2004).
- 24. G.D. Chryssikos, E.I. Kamitsos, J.A. Kapoutsis, A.P. Patsis, V. Psycharis, A. Koufoudakis, Ch. Mitros, G. Kallias, E. Gamari-Seale, D. Niarchos, Physica C254, 44 (1995).
- 25. R. Fehrenbacher and T.M. Rice, Phys. Rev. Lett. 70, 3471 (1993).

А.А. Завгородній, О.В. Самойлов, Р.В. Вовк, М.О. Оболенський, З.Ф. Назіров, О.Г. Петренко, V.M. Pinto Simoes

ДЕЯКІ ОСОБЛИВОСТІ ПОЗДОВЖНЬОЇ ПРОВІДНОСТІ МОНОКРИСТАЛІВ Y_{1-z}Pr_zBa₂Cu₃O_{7-δ} З РІЗНИМ ВМІСТОМ ПРАЗЕОДИМУ

Досліджено вплив допіювання празеодимом на провідність в базисній площині ВТНП-монокристалів $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$. Встановлено, що по мірі зростання концентрації празеодиму в інтервалі $0.0 \le z \le 0.5$ відбувається істотне зміщення температурних ділянок, які відповідають переходу виду метал–діелектрик та режиму псевдощілинної аномалії. При цьому ділянки кривих поблизу переходу метал–діелектрик добре описуються за допомогою асимптотичної залежності, що відповідає реалізації в системі квантового критичного режиму, – так званого закону «1/3». Показано, що надлишкова провідність $\Delta \sigma(T)$ зразків з проміжним вмістом празеодиму в широкому інтервалі температур $T_f < T < T^*$ підкоряється експоненціальній температурній залежності $\Delta \sigma \sim (1 - T/T^*)\exp(\Delta_{ab}^*/T)$ і може бути інтерпретована в термінах теорії кросовера БКШ–БЕК, де T^* представлена як середньопольова температура надпровідного переходу.

Ключові слова: надлишкова провідність, допіювання, монокристали YBaCuO, високотемпературна надпровідність, перехід метал–діелектрик, кросовер БКШ–БЕК, псевдощілинний стан

A.A. Zavgorodniy, A.V. Samoylov, R.V. Vovk, M.A. Obolenskii, Z.F. Nazirov, A.G. Petrenko, V.M. Pinto Simoes

SOME FEATURES OF LONGITUDINAL CONDUCTIVITY OF $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ SINGLE CRYSTALS WITH DIFFERENT ADMIXTURES OF PRASEODYMIUM

Conductivity in the basal plane of Pr-doped $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ single crystals has been investigated. It is shown that with the increasing of praseodymium concentration in an interval $0.05 \le z \le 0.5$ there is substantial displacement of temperature areas which respond to the metal-dielectric transition and to the mode of the pseudogap anomaly. Thus, sections of the curves in the vicinity of metal-dielectric transition are well described by asymptotic dependence which answers realization in the system of the quantum critical mode – the so-called law «1/3». It is shown that the excess conductivity for the analyzed samples shows dependence $\Delta \sigma \sim (1 - T/T^*)\exp(\Delta_{ab}^*/T)$ in a wide temperature range $T_f < T < T^*$, where T^* is the mean field temperature of superconducting transition. The temperature dependence of the pseudogap can be satisfactorily described in terms of the BCS-BEC crossover theoretical model.

Keywords: excess conductivity, doping, YBaCuO single crystals, high-temperature superconductivity, metal–dielectric transitions, BCS–BEC crossover, pseudogap state

Fig. 1. Temperature dependences of excess conductivity ρ_{ab} for $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ single crystals for different praseodymium concentrations *z*: 1 - 0.0, 2 - 0.05, 3 - 0.19, 4 - 0.23, 5 - 0.34, 6 - 0.43, 7 - 0.48, 8 - 0.5. Arrows show pseudogap-state transition temperatures T^* . Dash lines – extrapolation of linear section to zero value of temperature

Fig. 2. Dependences $\ln[\rho_{ab}/T] - 1/T$ for different praseodymium concentrations. Enumeration of curves is the same as in Fig. 1

Fig. 3. Dependences $1/\rho_{ab}-T^{1/3}$ for different praseodymium concentrations. Enumeration of curves is the same as in Fig. 1. Arrows show points where the curves start systematically declining from the linear dependence

Fig. 4. Temperature dependences of electrical resistance on the $\rho T - T^2$ coordinates in *ab*plane. Enumeration of curves is the same as in Fig. 1. Dash lines – extrapolation of linear sections of experimental dependences

Fig. 5. Temperature dependences of excess conductivity in *ab*-plane for single crystals K1–K8 (the insert – curves 7, 8) on the $\ln \Delta \sigma - 1/T$ coordinates. Dash lines – approximation of experimental curves by equation (5). Enumeration of curves in the figure and insert is the same as in Fig. 1.

Fig. 6. Temperature dependences of pseudogap for crystals K1–K8 on reduced $\Delta^*(T)/\Delta^*_{\max} - T/T^*$ coordinates (Δ^*_{\max} – value of Δ^* on plateau far from T^*). Enumera-

tion of curves in the figure responds to that of Fig. 1 ($-\Box - 1$, $-\odot - 2$, $-\Delta - 3$, $-\nabla - 4$, $-\Delta - 5$, $-\Delta - 6$, $-\nabla - 7$, $-\bullet - 8$). Dash lines – dependences of $\Delta^*(T)/\Delta(0)$ on T/T^* calculated, according to [18], for values of crossover parameter $\mu/\Delta(0) = 10$ (limit BCS), -2, -5, -10 (limit BEC) shown by lines 9-12

Fig. 7. Dependences $d\rho_{ab}/dT-T$ in the region of SC transitions for samples K1–K8. Enumeration of curves is the same as in Fig. 1.

Fig. 8. Temperature dependences of excess conductivity in the *ab*-plane on the $\ln\Delta\sigma$ -lnc coordinates for singe crystals K1–K6. Enumeration of curves in the same as in Fig. 1. Dash lines – approximation of experimental curves by straight lines with slope $\alpha_1 \approx -0.5$ (3*D*-mode) and $\alpha_2 \approx -1.0$ (2*D*-mode). Arrows show points of 2*D*–3*D* crossover. Insert (*a*) shows the same dependences for samples K7 and K8, insert (δ) – concentration dependences of the relative width $t^* = (T^* - T_f^{3D})/T_f^{3D}$ of pseudogap mode

Fig. 9. Concentration dependences of pseudogap $\Delta_{ab}^*(z)$ value and transverse coherence length $\xi_c(0, z)$ calculated by formulae (5) and (12), respectively