PACS: 81.40.-z

В.В. Столяров^{1,2}

ДЕФОРМАЦИОННОЕ ПОВЕДЕНИЕ ТИТАНОВЫХ СПЛАВОВ ПРИ РАСТЯЖЕНИИ С ПРОПУСКАНИЕМ ИМПУЛЬСНОГО ТОКА

¹Институт машиноведения им. А.А. Благонравова РАН М. Харитоньевский пер. 4, г. Москва, 101990, Россия E-mail: vlstol@mail.ru

²Московский государственный индустриальный университет г. Москва, Россия

Исследуется феноменология электропластического эффекта (ЭПЭ) при растяжении с пропусканием импульсного тока в Ti-сплавах разной природы: технически чистом титане и сплаве TiNi. Введение импульсного тока при растяжении сопровождается скачками напряжения разной природы, обусловленными фазовым превращением и ЭПЭ, который является структурно-чувствительным свойством и уменьшается при измельчении структуры, и даже исчезает в нанокристаллическом состоянии.

Ключевые слова: титановые сплавы, деформация, электропластический эффект, структура, механические свойства

Введение

В последнее время для повышения пластичности ультрамелкозернистых (УМЗ) материалов предложен подход, основанный на структурном дизайне [1–3]. Другим подходом, который часто используется для повышения технологической пластичности разных материалов, является использование ЭПЭ, обнаруженного в виде скачков напряжения при растяжении с током монокристаллов чистых металлов [4,5]. Недавно было показано, что данный метод может также применяться для получения наноструктуры [6]. Настоящая статья посвящена изучению особенностей кривых растяжения с током и без тока титановых сплавов в крупнокристаллическом (КК) и УМЗ-состояниях.

Экспериментальные методы и материалы

УМЗ-структура в технически чистом титане ВТ1-0 была получена методом равноканального углового прессования (РКУП) крупнокристаллического прутка с размером зерен 20 µm. Сплав с памятью формы Ti_{49.3}Ni_{50.7} в виде полос сечением 2 × 6 mm закаливали с 800°C в воду для получения твердого раствора с КК-структурой со средним размером зерен 50 µm. Полосы подвер-

гали многопроходной электропластической прокатке (ЭПП) под действием однополярного импульсного тока плотностью 84–222 A/mm², длительностью импульса (8–10)·10⁻³ s⁻¹ и частотой 10³ Hz; подробности метода описаны в [6]. Деформируемость полос оценивали истинной степенью деформации $e = \ln t_0/t_f$, где t_0 , t_f – соответственно начальная и конечная толщина полосы. Аттестация структуры и механические испытания были выполнены на образцах после отжига при температуре 450°C, когда происходят заметные структурные изменения – релаксация напряжений, рекристаллизация или старение. Микроструктуру исследовали на тонких фольгах в просвечивающем электронном микроскопе. Механическое поведение изучали в процессе растяжения при скорости 0.5 mm/min ($0.4 \cdot 10^{-3}$ s⁻¹) на машине MTS (без тока) и горизонтальной машине ИМ-5081 (с одиночным и многоимпульсным током).

Экспериментальные данные

Микроструктура. Данные просвечивающей микроскопии сплава TiNi после ЭПП ($e = 1.81, j = 168 \text{ A/mm}^2$) и постдеформационного отжига показали наличие нанокристаллических зерен *B*2-фазы, свободных от внутренних дефектов (рис. 1,*a*). Анализ дифракционных картин деформированного сплава до отжига подтвердил присутствие аморфной и *B*19'-фаз в небольших количествах и кристаллографической текстуры типа (200).

Рис. 1. Микроструктура сплавов $Ti_{49.4}Ni_{50.6}$ (*a*) и BT1-0 (*б*), подвергнутых ЭПП и отжигу при 450°С в течение 1 h

Растяжение без тока. Механическое поведение сплавов с памятью формы TiNi отличается от такового для традиционных материалов. Характерный вид диаграммы растяжения зависит от соотношения температуры деформации T_d (в нашем случае T_d – комнатная), температур начала M_s и конца M_f превращения при охлаждении и температур начала A_s и конца A_f превращения при нагреве. Для сплава Ti_{49.3}Ni_{50.7} в закаленном состоянии и после ЭПП это соотношение соответствует $M_s < T_d < A_f$. Типичная диаграмма растяжения показана на рис. 2,*a*.

Видно, что на кривой растяжения имеется площадка псевдотекучести, соответствующая обратимому фазовому превращению A (аустенит B2) \leftrightarrow M (мартенсит). За пределами площадки наблюдается необратимая упругопластическая деформация мартенсита. Применение ЭПП приводит к сильному упрочнению и исчезновению площадки превращения (рис. 2, δ), а последующий отжиг при 450°C – к ее восстановлению при более высоком напряжении и появлению дополнительной площадки при малых напряжениях (рис. 2, β).

Механические свойства сплава после ЭПП и постдеформационного отжига представлены в таблице. Там же для сравнения приведены данные для состояний, полученных закалкой и кручением под гидростатическим давлением. Видно, что сплав в НК-состоянии, полученном ЭПП и последующим отжигом, имеет более высокие прочностные свойства, чем в КК-состоянии. Однако повышение прочности с уменьшением размера зерен сопровождается

снижением относительного удлинения до разрушения, что типично для металлов и сплавов. Пластичность деформированного сплава после отжига при 450°C существенно улучшается. Отметим, что деформация, вызванная превращением ε_m для НК-состояния (8.1%) в два и более раз выше, чем для КК-состояния (4.0%).

Таблица

Режимы обработки	Размер	ε _m , %	σ_m	σ_{02}	σ_b	\$ 0/
	зерен, µт		MPa			0, 70
Закалка с 800°С	50	4	150/210	400/600	750/940	60/40
ЭПП (е = 1.81)	0.08	_	450/-	1480/1587	1500/1926	5/2.4
$\Im\Pi\Pi(e=1.81) + 450^{\circ}C$	0.10	8.1	400/250	1170/1200	1300/1300	17/9.6

Механические свойства сплава TiNi при растяжении с током и без тока

Примечание. ε_m и σ_m – соответственно деформация и напряжение фазового превращения. В числителе и знаменателе – свойства при растяжении соответственно с током и без тока.

Растяжение с током. Механическое поведение при растяжении под действием одиночных токовых импульсов для сплавов после закалки, ЭПП ($j = 200 \text{ A/mm}^2$, $\tau = 160 \text{ µs}$, e = 1.91) и ЭПП с отжигом при 450°С показано на рис. 3. Отличительная особенность кривых напряжение–перемещение при воздействии импульсным током – появление скачков напряжения, каждый из которых соответствует одиночному импульсу тока.

Направление (вверх, вниз) и амплитуда (25–300 MPa) скачка напряжения различны и зависят от структурного состояния и параметров импульса тока.

Скачки напряжения вниз с амплитудой менее 50 MPa наблюдаются только в закаленном КК-сплаве и при напряжениях выше σ_m . Амплитуда скачков напряжения слабо увеличивается с ростом деформации (рис. 3,*a*).

Скачки напряжения вверх наблюдались для всех состояний (рис. 3,*a*,*б*,*в*), при этом их амплитуда (от 50 до 300 MPa) была наибольшей на площадке, соответствующей фазовому превращению. Снижение плотности тока в интервале $(5.3-3.0)\cdot 10^3$ A/mm² (рис. 3,*б*) или длительности импульса в интервале 1–0.1 µs (рис. 3,*в*) вызывает уменьшение амплитуды скачка и исчезновение пиков. Напротив, переход от одиночных к множественным импульсам тока резко повышает амплитуду скачка до 500 MPa (рис. 3,*г*). Сравнение рис. 2,*б* и 3,*б* показывает, что под действием тока появляется точка перегиба или вырожденная площадка псевдотекучести, что соответствует превращению.

В таблице показаны механические свойства КК- и НК-отожженного сплавов при растяжении с током. Здесь, как и при растяжении без тока, измельчение структуры приводит к повышению прочности и снижению пластичности, а отжиг способствует частичному восстановлению относительного удлинения. Оказалось также, что импульсный ток при растяжении влияет на форму кривых растяжения и на пластичность. Сравнение удлинений до разрушения в таблице показывает, что их значения при испытании с током в 1.5–2 раза выше, чем без тока для КК- и НК-состояний.

Физика и техника высоких давлений 2010, том 20, № 4

Рис. 3. Кривые растяжения с одиночными (a, δ, b) и множественными (c) импульсами тока для сплава TiNi после закалки (a), ЭПП до (δ) и после отжига при 450°С (b, c)

На рис. 4,*a*,*б* показаны кривые растяжения с током для чистого Ti в крупнозернистом (K3)- и УМЗ-состояниях. Видно, что различие кривых состоит не только в уровне напряжений течения, но и в амплитуде скачков напряжения. Амплитуда скачков напряжения для K3-титана (100–120 MPa) выше, чем для УМЗ-титана (50 MPa), что указывает на снижение ЭПЭ с уменьшением размера зерна. Этот факт согласуется с очень слабым ЭПЭ и даже с его отсутствием в HK-сплаве TiNi (рис. 3,*a*).

Обсуждение результатов

Здесь необходимо отметить, что первоначально ЭПЭ был открыт при растяжении монокристаллов чистых металлов и КК-сплавов без фазовых превращений с хорошей проводимостью [4,7]. Отличием данной работы является впервые проводимое исследование ЭПЭ в титановых сплавах в наноструктурном состоянии.

Физика и техника высоких давлений 2010, том 20, № 4

Рис. 4. Кривые растяжения с током в КЗ- (а) и УМЗ- (б) титане

Особенности формы кривых напряжение–деформация при растяжении сплава TiNi обусловлены изменением его фазового состава (рис. 3). Наличие площадок псевдотекучести при 210 и 294 MPa обусловлено индуцированным превращением $B2 \rightarrow B19'$ (рис. 3,a, e). Аналогичная площадка при 50 MPa для HK-состояния (рис. 3, e) может быть следствием переориентации или обратного превращения B19'-фазы [8]. Отсутствие какого-либо плато на рис. 3, 6 связано со стабилизацией мартенситной фазы при интенсивной деформации, которая может превратиться в аустенит только при нагреве выше 250° C [9]. Общим для деформационных кривых всех состояний является отсутствие стадии шейкообразования. Большое равномерное удлинение для КК-состояния (рис. 3, a) резко контрастирует с его отсутствием в НКсостоянии до и после отжига (рис. 3, 6, e). Отметим, что суммарная длина плато ε_m для HK-отожженного состояния является максимальной и в два раза больше, чем в КК-состоянии, что свидетельствует о большей величине пластичности превращения.

Измельчение зерен от десятков микрон до десятков нанометров деформационными методами уменьшает относительное удлинение более чем на порядок, а последующий отжиг способствует частичному восстановлению пластичности (таблица). Наблюдаемые изменения пластичности в сплаве TiNi с фазовым превращением не отличаются от механического поведения материалов без фазового превращения [10,11], что свидетельствует об общности деформационных механизмов в разных по природе сплавах. Однако изменения пластичности в TiNi связано не только с изменением размера зерен, но и со структурными превращениями – частичной аморфизацией за счет сильной деформации и нанокристаллизацией при нагреве [6].

В связи с отсутствием публикаций об ЭПЭ в наноматериалах принципиальная возможность его проявления в наноструктурном нитиноле долго оставалась неясной. Хотя ниже впервые будут обсуждаться данные об ЭПЭ в нитиноле и их возможная связь с повышением технологической деформируемости, этот вопрос остается открытым и требует детальных исследований в будущем.

Природа скачков напряжения на кривых напряжение–деформация при растяжении с током различна и отражает преимущественное проявление либо фазовых превращений, либо ЭПЭ. Скачки напряжения вверх связаны с обратным превращением мартенсита в аустенит, которое стимулируется импульсом тока и легким повышением температуры на несколько градусов. Природа скачков аналогична проявлению реактивного напряжения при заневоливании образца. Поскольку мартенсит в разных количествах присутствует во всех структурных состояниях во время растяжения, то и положительные скачки есть на всех кривых растяжения. Понятна и их амплитудная зависимость от плотности тока (рис. $3, \delta$), продолжительности импульса (рис. 3, в) и количества импульсов (рис. 3, c), поскольку увеличение этих параметров приводит к повышению температуры в образце и соответственно росту объема превращенной фазы.

Скачки напряжения вниз по сравнению со скачками вверх имеют заметно меньшую амплитуду и, по-видимому, отражают проявление ЭПЭ. В стабильном состоянии крупнозернистые мартенсит и аустенит способны структурно релаксировать под действием тока, что и наблюдалось для ККсостояния (рис. 3,*a*). Возможно, что в НК-состоянии для проявления ЭПЭ и релаксации дислокационных скоплений требуются более высокие параметры тока, которые здесь не исследованы.

Отметим важное обстоятельство, что оба вида скачков стимулируют повышенную пластичность, связанную как с индуцированным фазовым превращением, так и с обычной подвижностью дислокаций. Это заметно в увеличении длины стресс-плато, появлении точки перегиба и стадии равномерного удлинения.

Выводы

Введение импульсного тока при растяжении вызывает скачки напряжений «вверх-вниз», связанные с фазовым превращением (TiNi) либо с эффектом электропластичности (Ti). ЭПЭ является структурно-чувствительным свойством, величина которого уменьшается при измельчении структуры и даже исчезает в нанокристаллическом состоянии.

Работа выполнялась при финансовой поддержке РФФИ, гранты № 08-08-00497-а, 08-08-92202-China_а и Минобрнауки, госконтракт № П 340.

- 1. Y. Wang, M. Chen, F. Zhou, E. Ma, Nature 419, 912 (2002).
- 2. C. Koch, Scr. Mater. 49, 657 (2003).
- 3. R.Z. Valiev, Mater. Sci. Forum 426, 4 (2003).
- 4. О.А. Троицкий, Ю.В. Баранов, Ю.С. Авраамов, Физические основы и технологии обработки современных материалов (теория, технология, структура и свойства), Институт компьютерных технологий, Москва–Ижевск (2004).

Физика и техника высоких давлений 2010, том 20, № 4

- 5. Y. Jiang, G. Tang, L. Guan et al., J. Mater. Res. 23, 2685 (2008).
- 6. *V.V. Stolyarov, U.Kh. Ugurchiev, I.B. Trubitsyna, S.D. Prokoshkin, E.A. Prokofiev,* High Pressure Physics and Technology **16**, № 4, 64 (2006).
- 7. H. Conrad, Mater. Sci. Eng. A287, 276 (2000).
- 8. V. Stolyarov, Mater. Sci. Eng. A503, 18 (2009).
- 9. *И.Б. Трубицына, С.Д. Прокошкин, А.В. Коротицкий и др.*, Журнал функциональных материалов **1**, № 2, 66 (2007).
- 10. *H. Gleiter*, Acta Mater. **48**, № 1, 1 (2000).
- 11. R. Valiev, R. Islamgaliev, I. Alexandrov, Progr. Mater. Sci. 45, 103 (2000).

В.В. Столяров

ДЕФОРМАЦІЙНА ПОВЕДІНКА ТИТАНОВИХ СПЛАВІВ ПІД ЧАС РОЗТЯГУВАННЯ З ПРОПУСКАННЯМ ІМПУЛЬСНОГО СТРУМУ

Досліджується феноменологія електропластичного ефекту (ЕПЕ) під час розтягування з імпульсним струмом в Ті-сплавах різної природи: технічно чистому титані і сплаві Ті–Ni Введення імпульсного струму при розтягуванні супроводжується стрибками напруги різної природи, обумовленими фазовим перетворенням і електропластичним ефектом, який є структурно-чутливою властивістю і зменшується при подрібненні структури, і навіть зникає в нанокристалічному стані.

Ключові слова: титанові сплави, деформація, електропластичний ефект, структура, механічні властивості

V.V. Stolyarov

DEFORMATION BEHAVIOR OF TITANIUM ALLOYS DURING TENSION WITH PULSED CURRENT TRANSMISSION

Phenomenology of electroplastic effect (EPE) during tension with pulsed current transmission has been investigated in Ti-alloys of different nature: commercially pure titanium and a TiNi alloy. The introduction of pulsed current at tension is accompanied by various stress jumps caused by phase transformation and electroplastic effect, which is a structurally sensitive property and decreases with structure refinement and even disappears in nanocrystalline state.

Keywords: titanium alloys, deformation, electroplastic effect, structure, mechanical properties

Fig. 1. Microstructure of $Ti_{49.4}Ni_{50.6}$ (*a*) and BT1-0 (δ) alloys subjected to EPE and annealing at 450°C for 1 h

Fig. 2. Curves for tension in the absence of current for TiNi alloy after quenching (*a*) and after EPE before (δ) and after (ϵ) annealing

Fig. 3. Curves for tension with single (a, δ, s) and multiple (z) pulses of current for TiNi alloy after quenching (a), EPE before (δ) and after annealing at 450°C (s, z)

Fig. 4. Curves for tension with current in CG- (a) and UFG- (δ) titanium